共查询到19条相似文献,搜索用时 62 毫秒
1.
生物地理学优化算法(Biogeography-Based Optimization,BBO)是一种模仿物种迁移规律的智能优化算法,其中迁移算子是影响优化效果的关键环节.基于迁移地的选择模式(以迁出率高的栖息地为主导或者以迁入率高的栖息地为主导)和迁移量的规模(单变量和部分变量),提出了BBO算法中可能存在的四种迁移方式.通过对13个经典实例的实验仿真,比较4种迁移算子的优化结果,阐明了产生差异的原因.实验结果表明,迁入主导的部分迁移式算子优化效果最好. 相似文献
2.
生物地理学优化算法研究 总被引:2,自引:0,他引:2
张建科 《计算机工程与设计》2011,32(7):2497-2500
对生物地理学优化算法(biogeography-based optimization,BBO)的研究现状进行了总结,并介绍了一些最新的研究进展。从BBO算法提出的背景出发,讨论了算法的主要思想、算法原理以及算法步骤。论述了该算法的研究进展,包括BBO算法的改进、算法的收敛性分析、BBO算法与其他算法的融合以及BBO算法在优化领域的典型应用,对BBO算法有待研究的问题做了总结。 相似文献
3.
针对生物地理学优化(BBO)算法搜索能力不足的缺点,提出基于萤火虫算法局部决策域策略的改进迁移操作来提算法的全局寻优能力。改进的迁移操作能够在考虑不同栖息地各自的迁入率与迁出率的基础上,进一步利用栖息地之间的相互影响关系。将改进算法应用于12个典型的函数优化问题来测试改进生物地理学优化算法的性能,验证了改进算法的有效性。与BBO、改进BBO(IBBO)、基于差分进化的BBO(DE/BBO)算法的实验结果表明,改进算法提高了算法的全局搜索能力、收敛速度和解的精度。 相似文献
4.
提出一种多目标扰动生物地理学优化算法(MDBBO) 来求解多目标优化问题(MOPs). 该算法基于现有群体中非支配可行解的比率, 联合个体非支配等级排序和拥挤距离对个体进行评价; 在生物地理迁移策略基础上提出扰动迁移算子并应用于群体进化, 增强群体多样性; 应用归档种群来保存所获得的非支配可行解, 并用循环拥挤距离法对其更新, 确保群体的均匀分布性. 通过标准函数测试以及与经典算法比较表明了该算法求解MOPs 的有效性. 相似文献
5.
6.
为增强生物地理学优化算法(biogeography-based optimization,BBO)的优化能力并克服其不能很好平衡开发能力与避免陷入局部最优解之间的矛盾,提出基于微扰动和混合变异的差分生物地理学优化算法(differential biogeography optimization algorithm ba... 相似文献
7.
为提高生物地理学优化算法(BBO)的性能,提出一种基于混合迁移策略的生物地理学优化算法(HMBBO)。该算法通过动态选取待迁出种群个体,平衡对解集搜索过程中的选择压力。采用混合迁移策略改进迁移机制,增强算法对解的搜索能力,避免引起过早收敛。并加入分段Logistic混沌机制对个体进行变异,提高算法的收敛精度。基于标准测试函数的仿真实验表明,HMBBO算法可有效避免早熟收敛,在收敛速度和收敛精度上较标准BBO算法有较大提高。 相似文献
8.
生物地理学优化算法综述 总被引:8,自引:2,他引:8
生物地理学(Biogeography)是一门研究自然界种群迁移机制的科学,Dan Simon用生物地理学的方法和机制来解决工程优化问题,提出了生物地理学优化算法(BBO,Biogeography-Based Optimization).生物地理学优化算法以其独特的搜索机制和较好的性能在智能优化算法领域得到了广泛的关注.对生物地理学优化算法的设计原理、迁徙模型、算法流程及相应迁移和突变操作进行了综述.通过BBO算法在14个基准函数下与传统算法,如遗传算法、蚁群算法和粒子群等优化算法的性能比较,表明生物地理学优化算法是有效的.论述了算法与传统优化算法之间的差异以及BBO算法有待解决的问题. 相似文献
9.
基于高斯变异的生物地理学优化模型 总被引:1,自引:0,他引:1
生物地理学优化是一种新型群体智能算法,具有较好的应用前景.针对算法中两大基本算子之一的变异算子进行研究,为了进一步提高优化模型的精度,给出关于高斯变异的生物地理学优化模型.同时介绍了算法的基本原理,重点分析了算法中的变异策略,采用多个测试函数进行仿真.仿真结果表明,在相同的迁移模型下,不同的变异策略对算法优化性能有较大影响,高斯变异策略的优化性能优于随机变异策略.实验还表明栖息地数量对于算法的优化能力也有较大的影响. 相似文献
10.
提出基于动态迁移的ε约束生物地理学优化算法(εBBO-dm).首先,利用ε约束方法来处理约束条件,并根据群体约束违反度的优劣程度对水平参数ε进行自适应调整,充分利用较优不可行个体的有效信息,有效提高对可行域的搜索效率.其次,采用新的ε约束排序机制确定迁入率和迁出率,较好地平衡可行个体与不可行个体之间的关系.再次,为了增强迁移机制的搜索能力,提出新的动态迁移策略.最后,采用分段logistic混沌映射改进物种变异机制,提高了算法的收敛精度.通过对13个标准测试函数的仿真实验表明,εBBO-dm较其他算法在收敛精度和收敛速度上具有明显优势,尤其适合于复杂单目标约束优化问题的求解. 相似文献
11.
生物地理学优化算法理论及其应用研究综述 总被引:1,自引:0,他引:1
生物地理学优化算法(Biogeography-Based Optimization,BBO)是Simon提出的一种基于生物地理学理论的新型智能优化算法,具有良好的收敛性和稳定性。从BBO算法提出的背景出发,介绍了算法的基本理论、算法特点以及算法流程。总结了BBO算法的研究进展,包括BBO算法的理论分析、算法的改进、算法与其他优化算法的混合算法以及BBO算法在函数优化、电力系统、图像处理、机器人路径规划以及调度优化等领域的典型应用。对BBO算法有待解决的问题和未来研究方向进行了总结。 相似文献
12.
针对生物地理学优化算法(biogeography-based optimization, BBO)易早熟收敛、陷入局部最优的问题,引入物种演化理论提出了改进生物地理学优化算法。该算法将所有栖息地按照物种数量划分为三种地区,并建立协同进化关系,合理地采用区间入侵、区内合作/竞争策略,满足多样性的同时避免了早熟收敛。定义了物种更迭和物种进化两种变异策略,提出的双策略协同变异算子旨在解决变异算子对较优解的破坏。通过CEC2017中的八个基准测试函数与标准BBO及相关改进算法相比,该算法在算法性能、稳定性等方面优于BBO及其他改进算法,且该算法不易被局部最优值所限制。将该算法应用于以最大完工时间为目标的柔性作业车间调度问题(flexible Job-Shop scheduling problem, FJSP)以检验其实际应用价值,实验表明,该算法在解决FJSP上具有一定的有效性。 相似文献
13.
14.
针对柔性作业车间调度问题的特点,提出了一种基于改进生物地理学优化算法的求解方案。该方案采用基于工序和基于机器相结合的编码机制,在初始种群中引入启发式算法生成的优良个体,并在标准生物地理学算法基础上对迁移和变异操作进行了改进,采用符合该调度问题的迁移率模型和自适应变异机制,克服了传统算法易于早熟或收敛慢的缺点。通过仿真验证了该算法的可行性和有效性。 相似文献
15.
针对生物地理学优化(BBO)算法寻优过程中易陷入搜索动力不足、收敛精度不高等问题,提出一种基于改进迁移算子的生物地理学优化算法(IMO-BBO)。在BBO算法基础上,结合“优胜劣汰”的进化思想,将迁移距离作为影响因素对迁移算子进行改进,并用差分策略将不适宜迁移的个体进行替换,以增加算法的局部探索能力。同时为丰富物种的多样性,引入多种群概念。利用IMO-BBO算法分别对13个基准测试函数进行测试,与基于协方差迁移算子和混合差分策略的BBO (CMM-DE/BBO)算法和BBO算法相比,改进算法提高了对全局最优解的搜索能力,在收敛速度和精确度上也都有显著提高;将IMO-BBO算法应用到PID参数整定中,仿真结果表明,所提算法优化后的控制器具有更快的响应速度和更稳定的精度。 相似文献
16.
通过分析生物地理学优化算法(BBO)性能的不足,提出了一种基于混合凸迁移和趋优柯西变异的对偶生物地理学优化算法(DuBBO).在迁移算子中,采用动态的混合凸迁移算子,使算法能够快速地向最优解方向收敛;在变异机制中,采用趋优变异策略,并加入了柯西分布随机数帮助算法跳出局部最优解;最后将对偶学习策略集成到算法中,加快了算法收敛速度并提升了搜索能力.在23个benchmark函数上的实验结果证明了提出的三种改进策略的有效性和必要性.最后将DuBBO与BBO以及另外六种优秀的改进算法进行对比.实验结果表明,DuBBO在整体性能上最好、收敛速度更快、收敛精度更高. 相似文献
17.
针对猎人猎物优化算法寻优精度低和易陷入局部最优等问题,提出了一种基于领导者竞争策略的改进猎人猎物优化算法。首先将种群随机分为三个亚群,采用不同的搜索策略,扩大搜索范围;其次,采用精英组合突变策略,提升种群子代多样性,规避局部最优值;最后,提出领导者竞争策略,利用个体间的信息交流,统合各个策略,筛选出最优变量。通过数值实验以及在工程优化问题上的应用结果表明,所提算法相较于对比算法具有更为优异的寻优能力,验证了改进策略的有效性和可靠性。 相似文献
18.
针对生物地理优化(BBO)算法探索能力不强、收敛速度慢的缺点,提出一种基于混合二次对立学习的生物地理优化算法--HQBBO。首先,定义一种启发式的混合二次对立点,并从理论上证明其搜索效率优势;然后,提出混合二次对立学习算子,增强算法的全局探索能力,提高收敛速度;此外,还采用搜索域动态缩放策略和精英保留策略进一步提高寻优效率。对8个基准测试函数的仿真实验结果表明,所提算法在寻优精度和收敛速度上优于基本BBO算法和对立BBO算法(OBBO),表明其采用的混合二次对立学习算法对于其高收敛速度和全局探索能力是非常有效的。 相似文献
19.
In this paper, a hybrid biogeography-based optimization (HBBO) algorithm has been proposed for the job-shop scheduling problem (JSP). Biogeography-based optimization (BBO) is a new bio-inpired computation method that is based on the science of biogeography. The BBO algorithm searches for the global optimum mainly through two main steps: migration and mutation. As JSP is one of the most difficult combinational optimization problems, the original BBO algorithm cannot handle it very well, especially for instances with larger size. The proposed HBBO algorithm combines the chaos theory and “searching around the optimum” strategy with the basic BBO, which makes it converge to global optimum solution faster and more stably. Series of comparative experiments with particle swarm optimization (PSO), basic BBO, the CPLEX and 14 other competitive algorithms are conducted, and the results show that our proposed HBBO algorithm outperforms the other state-of-the-art algorithms, such as genetic algorithm (GA), simulated annealing (SA), the PSO and the basic BBO. 相似文献