首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
薄膜非晶硅/微晶硅叠层太阳电池的研究   总被引:7,自引:0,他引:7  
采用射频等离子体增强化学气相沉积(RF—PECVD)技术制备非晶硅顶电池,采用甚高频等离子体增强化学气相沉积(VHF—PECVD)技术制备微晶硅底电池,初步优化研究了薄膜非晶硅/微晶硅叠层太阳电池顶电池与底电池的本征吸收层厚度匹配与电池电流匹配,以及氧化锌/金属复合背反射电极对电池的作用。研制出了面积为1.0cm^2效率达9.83%的薄膜非晶硅/微晶硅叠层太阳电池。  相似文献   

2.
3.
高效非晶硅叠层太阳电池的优化设计   总被引:1,自引:0,他引:1  
研究了高效a-Si/a-Si/a-Si-SiGe三结太阳电池的优化设计。电流匹配是影响二端子叠层太阳电池填充因子的关键因素,在内电极的p/n界面外附加载流子复合是由少数载流子浓度、界面态和p/n界面处材料的几何因素匹配决定的。利用适当的带隙匹配和i层厚度匹配来实现a-Si/a-Si/a-SiGe三结太阳电池结构的最佳化,同时采用改善n/i界面特性的缓冲层技术,获得了Voc=2.48V,Jsc=6.  相似文献   

4.
采用等离子增强化学气相沉积(PECVD)技术制备了系列本征微晶硅薄膜材料和nip单结微晶硅太阳电池,研究了硅烷浓度、衬底温度和辉光功率等沉积参数与薄膜材料性能、薄膜电池性能三者之间的关系.拉曼光谱和器件测试结果表明:随硅烷浓度的增加,本征层晶化率逐渐减小,直至转变为非晶硅;沉积温度高于200℃时,电池性能严重恶化;随等离子辉光功率增加,材料晶化率保持不变,而电池开路电压逐渐增大,短波光谱响应逐渐增强.在此基础上,优化了单结微晶硅电池沉积参数,得到效率为6.48% (AM0,25℃)的单结微晶硅薄膜太阳电池;并将其应用到非晶硅/微晶硅叠层电池中,在不锈钢柔性衬底上得到效率为9.28%( AM0,25℃)的叠层电池.  相似文献   

5.
太阳能光伏发电是新能源和可再生能源中最具有发展前途的方式。太阳电池从材料及制作工艺分为单晶硅、多晶硅和非晶硅3种。非晶硅太阳电池由于经济上的优势使之在整个太阳电池领域中的地位正在迅速升高,成为一些发达国家能源计划的重点。柔性衬底非晶硅太阳电池作为非晶硅太阳电池的一个新品种,近年来开始受到人们的重视,世界上许多公司竞相研究开发,取得了很大进展。1柔性衬底太阳电池的特点非晶硅太阳电池按衬底分为硬衬底和柔性衬底两大类。所谓柔性衬底太阳电池是指在柔性材料(如不锈钢、聚合物)上制作的非晶硅太阳电池。柔性太阳电池与…  相似文献   

6.
由于非晶硅光致衰退、微晶硅吸收系数低的原因,叠层结构电池成为提高电池效率和稳定性的有效途径.叠层电池各子电池较薄、太阳光的利用率较低,因此陷光结构在叠层电池中的作用尤其重要.具有绒面结构的前电极、叠层电池的中间层以及ZnO/Al或ZnO/Ag复合背电极共同组成硅薄膜太阳电池的陷光结构.中间层位于各子电池之间,作用是改变界面反射率,影响电池中光的传播路径.该文综述了叠层电池中间层的作用、要求以及此方面国内外的研究现状,并指出中间层研究中需要注意的主要问题和未来发展的趋势.  相似文献   

7.
聚合物衬底非晶硅太阳电池的研制   总被引:7,自引:1,他引:7  
报道了高透过率、耐高温聚酰亚胺薄膜的制备方法和性能。以该膜为基体制成的柔性衬底非晶硅太阳电池,转换效率达4.63%,重量比功率达231.5mW/g。  相似文献   

8.
赵红英  李立 《太阳能》2013,(7):17-19
采用实验测量装置对非晶硅太阳电池组件和单晶硅太阳电池组件的日均发电量进行测试对比,并对非晶硅的温度系数、I-V曲线特性及低光强下的吸收特性进行了分析。结果显示:非晶硅太阳电池板的发电效能优于单晶硅太阳电池板。  相似文献   

9.
作为新一代高效太阳电池,叠层太阳电池虽然效率较高,但仍存在不合理的结构设计,导致了较高的光损失。文章以具有光栅结构的钙钛矿/晶硅叠层太阳电池为模型,使用FDTD solutions软件分别对影响电池性能的子电池厚度、顶电池光栅尺寸以及中间层厚度等参数进行了模拟优化。模拟结果显示:合适的子电池厚度、光栅结构和中间层厚度,能最大化地提升叠层太阳电池的性能;其中,有光栅结构的叠层太阳电池的短路电流密度提升了20%。这一结果为进一步在实验室制备钙钛矿/晶硅叠层电池提供了参考。  相似文献   

10.
发展了一种叠层太阳电池准实验模型,根据各组分电池性能来预计非晶硅基三结叠层太阳电池的转化效率.对于如何获得组分电池短路电流的匹配,以及由此叠层电池可达到的最高效率问题,这种模型提供了一种实际可行的预计方法.  相似文献   

11.
采用德国HMI研发的AFORS-HET软件模拟了N型衬底非晶硅,单晶硅异质结太阳电池的特性,结果表明随着发射层厚度的增加,短路电流下降,电池的短波响应变差.在非晶硅,单晶硅异质结界面处加入不同的界面态密度(Dit).发现当Dit1012cm-2·eV-1时,电池的开路电压和填充因子均大幅减小,导致电池效率降低.当在非晶硅,单晶硅异质结界面处加入本征非晶缓冲层后,电池性能明显改善,但是缓冲层厚度应控制在30nm以内.模拟的a-Si/i-a-Si:H/c-Si/i-a-Si:H/n a-Si双面异质结太阳电池的最高转换效率达到28.47%.  相似文献   

12.
蔡宏琨  陶科  赵敬芳 《太阳能学报》2012,33(11):1841-1844
采用RF-PECVD技术,将甲烷(CH4)作为碳的掺杂源沉积P型微晶硅碳薄膜材料,主要讨论P型微晶硅碳材料的结构和性能随CH4掺杂量的变化。采用X射线衍射仪(XRD)、Raman光谱仪和傅里叶变换红外吸收光谱仪(FTIR)对薄膜的结构进行表征。随CH4掺杂量的增加,材料的暗态电导率σd减小,薄膜的晶化程度降低。通过调整CH4的掺杂量得到暗态电导率σd为0.15S/cm和光学带隙Eg大于2.0eV的P型微晶硅碳材料。将其应用到PEN柔性衬底非晶硅薄膜太阳电池上,得到电池效率为5.87%。  相似文献   

13.
离子注入技术在高效晶硅太阳电池中的应用   总被引:1,自引:0,他引:1  
董鹏  宋志成  张治  屈小勇 《太阳能》2014,(5):18-20,25
离子注入技术作为半导体领域中一项重要的掺杂工艺,将其应用到太阳电池中,可大幅提高电池转换效率。本文从工艺原理、工艺实现、关键技术难点、产业化情况等方面分析了离子注入技术。包括IBC电池在内,离子注入技术在未来高效晶硅电池中将扮演重要角色。  相似文献   

14.
该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-Si Ox:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 m A/cm2,达到38.5 m A/cm2,填充因子为82.7%,光电转换效率为23.5%。实验发现,在nc-Si Ox:H薄膜沉积前对本征非晶硅层表面进行处理,沉积1 nm纳米晶硅(nc-Si:H)种子层,可改善nc-Si Ox:H薄膜的晶化率,降低薄膜中的非晶相含量。与单层nc-Si Ox:H窗口层的电池相比,nc-Si:H/nc-Si Ox:H叠层结构提高电池填充因子,达到83.4%,光电转换效率增加了0.3%,达到23.8%。  相似文献   

15.
自1976年研制成功第一个非晶硅太阳电池以来,经过15年的发展,全世界非晶硅太阳电池年产量已达15MW,约占整个光伏产品的1/3,成为太阳电池的主导产品。人们发现,非晶硅太阳电池在运行中随着时间的增长,輸山功率有一定程度的衰减。这一问题是非晶硅太阳电池推广应用的主要障碍,各国科学家为了解决这个难题进行了大量研究.所谓性能衰减,实际上包括两个方面内容:一是光致效应(S-W效应)引起  相似文献   

16.
非晶硅太阳电池是20世纪70年代中期发展起来的一种新型薄膜太阳电池,与其他太阳电池相比,非晶硅电池具有以下突出特点:(1)制作工艺简单,在制备非晶硅薄膜的同时就能制作pin结构。(2)可连续、大面积、自动化批量生产。(3)非晶硅太阳电池的衬底材料可以是玻璃、不锈钢等,因而成本小。(4)可以设计成各种形式,利用集成型结构,可获得更高的输出电压和光电转换效率。(5)薄膜材料是用硅烷(SiH4)等的辉光放电分解得到的,原材料价格低。1非晶硅太阳电池的结构、原理及制备方法非晶硅太阳电池是以玻璃、不锈钢及特种…  相似文献   

17.
以氢化非晶硅为基体材料的非晶硅太阳电池,是近年来最引人注目的低成本、大面积太阳电池。与其他太阳电池相比,a-Si太阳电池具有许多特点: (1) 制造方法简便,耗能少,费用低, (2) 光吸收系数大,比单晶硅约大一个数量级,  相似文献   

18.
▲ 1969年英国国际电话电报公司首先研究非晶硅。▲ 1974年美国无线电公司首先制成非晶硅太阳电池。▲ 1975年英国丹迪大学报道了N和P掺杂。  相似文献   

19.
对在北京地区屋面上固定角度安装(目前光伏发电应用中最常见的安装形式)的非晶硅和多晶硅太阳电池组件进行了近二年的数据采集,纪录了北京地区温度数据和太阳电池阵列的实际发电量,分析了它们各自的特点,为用户更为关心的户外使用情况提供了参考依据;认为如果仅从温度特性考虑,是否采用非晶硅替代晶体硅电池在不同地区应有不同考虑,如果再考虑到人们普遍认为的非晶硅电池没有解决的稳定性问题,表面玻璃的非钢化、效率低等其它问题,非晶硅的使用应慎重,不应盲从.同时在使用中不论何种电池都不应忽视组件的通风问题.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号