首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以中温煤沥青(MTCP)和改质煤沥青(MCP)为原料,采用热聚合反应方法,在相同的反应时间下,研究不同反应温度下2种煤沥青的中间相热聚合行为。采用软化点仪、偏光显微镜、X射线粉末衍射仪(XRD)以及激光共焦拉曼光谱仪(Raman)对中间相沥青表征和分析。结果表明,2种煤沥青在相同工艺条件下呈现出相似的中间相聚合行为。偏光显微镜照片说明2种煤沥青聚合所得到的中间相类型均为镶嵌结构。XRD与Raman分析表明随着聚合温度的升高,中间相沥青内部芳香片层分子的取向性更好,排列更为规整。MTCP经过430℃、8 h聚合,可制备软化点为319℃的中间相含量高于80%的中间相沥青;MCP经过420℃、8 h聚合,可制备软化点316℃,中间相含量高于80%的中间相沥青。  相似文献   

2.
以中低温煤焦油沥青为原料,采用催化聚合法制备改质沥青,并在中低温煤焦油沥青中加入乙烯焦油和蒽油进行调和来提高改质沥青的流变性能,分别考察反应时间、反应温度及催化剂和交联剂的加入量对改质沥青的软化点、结焦值、甲苯不溶物含量和喹啉不溶物含量的影响。结果表明:加入乙烯焦油和蒽油调和可以有效提高改质沥青的流变性能,催化剂和交联剂按照1∶1的质量比加入,可以有效降低改质沥青的软化点,这是因为酸性催化剂和交联剂之间形成相对均相的反应体系,解决了改质沥青软化点高的问题。采用调和中低温煤焦油沥青制备改质沥青,筛选出的最佳工艺条件为:反应温度370℃,反应时间7h,催化剂和交联剂的加入量2.5%,该条件下制备的改质沥青的性质符合工业标准YB/T 5194-2015的要求,改质沥青的软化点为120℃,结焦值为56.28%,甲苯不溶物含量为30.52%,喹啉不溶物含量为8.21%,β树脂含量为22.31%。采用傅立叶变换红外光谱仪和偏光显微镜对制备出的改质沥青和中低温煤焦油沥青进行分析,初步推断出改质沥青中化合物芳环上的取代基明显增加且烷基取代的化合物大多数为芳烃分子,且在偏光显微镜下改质沥青中出现小球体,表明中低温煤焦油沥青在制备成改质沥青的这一过程中其相对分子质量变大,稠环芳烃含量增多。  相似文献   

3.
本文以改质沥青为原料,采用直接热缩合聚合和催化热缩合聚合反应的方法,在高压反应釜中,氮气气氛保护进行热缩合聚合反应,合成出沥青中间相。考查了不同热缩合温度和不同恒温时间对合成煤沥青中间相的影响,用软化点测定仪对煤沥青的软化点进行了测定,并利用偏光显微镜对中间相的光学结构进行了观察。研究结果表明:采用直接热缩合聚合反应,在热缩合温度400℃下,恒温时间为5h,得到软化点为250℃的光学各向异性含量较高的优质中间相。催化热缩合可以降低煤沥青热缩合聚合反应的温度,控制反应温度为330℃,反应时间7h时,得到软化点263℃的光学各向异性含量较高的优质中间相。  相似文献   

4.
煤沥青基中间相沥青的制备研究   总被引:2,自引:0,他引:2  
以纯化的煤焦油沥青为原料,考察了热聚合温度和恒温时间对中间相沥青的收率、光学显微形态、软化点和族组成的影响.结果表明:反应温度在420℃,恒温5 h时得到了软化点为312℃的流线体型中间相沥青,其收率为79.1%;热聚合反应在相对较低的温度400℃,反应时间为10 h时形成了软化点为305℃、收率为81.4%的优质广域型可纺性中间相沥青.对该原料煤沥青而言,通过控制热聚合反应温度和恒温时间可以达到制备优质中间相的目的.  相似文献   

5.
以改质煤沥青为原料,采用KOH活化法制备活性炭。探讨了碱炭比、炭化时间、活化温度、活化时间等对活性炭吸附性能的影响。结果表明,制备改质煤沥青基活性炭的最佳条件为:碱炭比为4,炭化时间为45 min,活化温度840℃,活化时间140 min,在此条件下,制得改质煤沥青基活性炭的碘吸附值为1 152.8 mg/g。  相似文献   

6.
以鞍钢改质沥青为原料,采用单溶剂萃取法过滤脱除原料沥青中的喹啉不溶物(QI),再用常压蒸馏去除溶剂,得到QI含量小于0.1%的净化沥青。考察了料液比、恒温时间和恒温温度对改质煤沥青QI净化效果的影响。结果表明,净化最佳工艺参数为料液比1∶1.5~1∶3,恒温时间1 h,恒温温度140℃。在最佳工艺条件下得到的净化沥青软化点为62℃,QI含量为0,TI含量为19.1%,结焦值为47.77%。采用红外光谱对净化沥青进行表征,结果表明,原料沥青经过萃取过滤后芳香烃类结构减少,脂肪烃类结构增加。该净化沥青QI较低,结焦残炭率较高,可作为制备浸渍剂沥青、煤基炭纤维等炭素材料的优质原料。  相似文献   

7.
以脱除QI的煤焦油软沥青(软化点59℃)为原料,在常压下300~380℃范围内通过空气氧化制备一定软化点范围的通用级沥青炭纤维用各向同性沥青。考察了空气氧化温度、时间、流量对煤焦油沥青性质和结构的影响。结果表明,空气氧化可有效提高煤焦油软化点,并获得各向同性沥青。采用核磁共振谱、红外光谱和元素分析考察了原料和氧化沥青的分子结构。在360℃空气氧化90~130 min条件下,得到的氧化沥青软化点在190~250℃之间,并表现出良好的可纺性,经熔纺得到10~20μm的沥青纤维。  相似文献   

8.
分别以煤焦油为原料,在430℃热缩聚50min-270min和以石油渣油为原料在310℃热缩聚130min-370min制备了一系列具有软化点的煤焦油沥青和石油沥青。通过元素分析、软化点、族组成、偏光光学和NMR对原料与沥青的结构进行了分析。在1.6MPa,480℃下将改质煤焦油尖 和石油沥青进行焦化,考察了焦收率和光学组织结构变化情况。结果表明,热缩聚可提高煤焦油沥青和石油沥青的软化点、不溶物含量和焦收率,煤焦油沥青与石油沥青成焦后均生成各向异性广域光学结构。  相似文献   

9.
以改质煤沥青为原料经溶剂热过滤法制备低QI净化沥青,再将净化沥青通N2脱掉轻组分制备浸渍剂沥青。以QI含量、软化点和结焦值为指标考察了温度、时间、N2流量等因素的影响。结果表明,在250℃,40 min,N2流量为40 L/h条件下,所得浸渍剂沥青的指标参数为软化点88℃左右,QI含量0.5%,TI含量为22.25%,结焦值为55.77%。红外光谱分析表明,和原料沥青相比,浸渍剂沥青的羰基类和胺类化合物减少,芳烃结构减少,饱和烃类结构增加;热重分析表明,浸渍剂沥青的小分子含量较原料沥青相对较多;黏度的测定表明,在130~200℃黏温曲线呈现负指数关系。  相似文献   

10.
包覆沥青对提高锂离子电池负极材料的性能起到重要作用。以乙烯渣油沥青为原料,通过常压热缩聚法制备包覆沥青。考察了反应温度、反应时间对包覆沥青的基础指标(软化点、甲苯不溶物、喹啉不溶物和结焦值)和光学显微结构的影响。研究结果表明:以N2作为保护气体,当热缩聚反应温度为390℃,反应时间为4 h的条件下,制备出了软化点为200℃,甲苯不溶物为35.47%,喹啉不溶物为1.11%,结焦值为67%的各向同性沥青。通过FTIR和TGA分析可知,乙烯渣油沥青和高软化点各向同性沥青的芳香性指数(Iar)分别为0.526 6和0.5377,在700℃热解残余质量分别为20.22%和50.79%。表明乙烯渣油沥青通过热缩聚处理后得到的高软化点各向同性沥青具有较高的芳香性和良好的热稳定性,是一种优质的包覆沥青。  相似文献   

11.
分别以煤焦油为原料在300℃空气氧化120min-480min和以石油渣油为原料在220℃空气氧化300min-720min,制备了一系列具有相近软化点的煤焦油沥青和石油沥青。通过NMR、元素分析、软化点、族组成和偏光光学进行原料与沥青的结构分析。在1.6MPa,480℃下将改质煤焦油沥青和石油沥青进行焦化,考察了焦收率和光学组织结构变化情况。结果表明空气氧化可提高煤焦油和石油渣油的软化点、不溶物含量和焦收率。石油沥青成焦后均生成各向异性广域学结构。而煤焦油沥青成焦后各向异性光学结构单元尺寸则随空气氧化时间增加而逐渐减小。  相似文献   

12.
《应用化工》2022,(10):2437-2441
以净化缩聚沥青(中间相碳微球生产中的母液沥青)为原料,通过空气氧化法制备高软化点包覆沥青。通过单因素法,考察了空气流量、反应温度、反应时间对包覆沥青的基本性质(工业分析指标和光学显微结构)的影响。结果表明,当反应温度为300℃,空气流量160 L/h,反应时间为6 h,可制备出软化点(SP)为215℃,甲苯不溶物(TI)为56.00%,喹啉不溶物(QI)为8.41%,结焦值(CV)为75.83%,收率为68.56%,且在偏光显微镜下为光学各向同性的高品质包覆沥青。并利用元素分析、傅里叶转换红外光谱(FTIR)结合分峰拟合技术、热重分析仪(TGA)对高软化点包覆沥青的热稳定性进行研究。  相似文献   

13.
采用新型的模压半炭化成型工艺在大气环境下制备出了高密度、低成本的焦炭颗粒增强沥青基炭复合材料(简称CRPCC材料)。研究了煤沥青的种类、沥青焦中添加冶金焦以及焦炭颗粒的粒度组成配比对CRPCC材料的密度和抗压强度的影响。结果表明:煤沥青的软化点高,用其制备的CRPCC材料的密度和抗压强度未必就高;沥青焦中添加一定含量的冶金焦,则可制备出密度和抗压强度更好的CRPCC材料。  相似文献   

14.
以中温煤沥青为原料,通过苯甲醛/对甲苯磺酸交联合成出以次甲基相连接的齐聚物,进一步热解制备了中间相沥青,考察了反应温度对齐聚物及其中间相沥青性能的影响。结果表明,随着反应温度的提高,改性煤沥青的收率、软化点、残炭率和密度都呈现上升的趋势;反应温度适当,易于得到光学各向异性发达、软化点较低的优质中间相沥青。  相似文献   

15.
惠友权  向柠  李鹤 《广东化工》2010,37(7):46-48
采用压力反应釜探讨了一种新型煤基沥青的炭化性能。结果发现,在试验的所有炭化条件下该原料均能够形成各向异性焦,说明融并性能良好。在炭化温度450~470℃,生焦各向异性组织的方向性随着温度的提高而改善,但生焦的形貌有所变差;在过高的炭化温度500℃下,生焦的显微结构和形貌均变差;在炭化压力0.3~0.7MPa,随着压力下降各向异性组织的方向性有所改善而单位变细,生焦的形貌改变不明显。选取适中的炭化温度450℃,更高的炭化压力1.3MPa,通过控制炭化体系的温度差和炭化后期适当减压增强气体逸出的剪切作用,制备出了显微组织和形貌得到明显改善的生焦。可见,适中的反应速率、较低的体系黏度和有效的气体逸出对于中间相的定向排列十分重要。  相似文献   

16.
以矾土、碳化硅、黏土、沥青、焦炭为原料,焦油为结合剂制备了炮泥试样,并研究了沥青软化点(75~145℃)对炮泥可塑性和强度的影响。结果表明:炮泥试样的可塑性不随沥青软化点的增大而呈现有规律的变化,沥青对炮泥可塑性的影响主要由沥青的组成决定;200℃烘干后试样的强度也不随沥青软化点的变化而呈现有规律的变化;但1000、1450℃烧后试样的强度随沥青软化点的升高呈增大趋势;综合考虑,制备炮泥用沥青的软化点以120~160℃为宜。  相似文献   

17.
研究了反应温度、反应压力和停留时间对中间相含量的影响。实验结果表明,中间相含量随反应温度和压力升高而提高,在0.22MPa时达到最高;随停留时间的延长而升高,在8h左右达到最大值。适宜的条件下可制备出中间相含量为1.22%的改质沥青。  相似文献   

18.
<正>煤经软化熔融过程再固化后形成半焦,再通过约1 000℃的焙烧可以提高焦炭强度。焦炭的强度和质量以前是用转鼓强度、显微强度、气孔率、密度、抗拉强度和CO2反应性等评价,但因煤是加热到400℃左右,经过软化熔融和流动发泡后再固化,进行半焦的炭化和焙烧,所以阐明煤软化熔融和再固化过程中的焦炭组织及气孔形成机理对了解焦炭强度等显微特征的发现机理极为重要,急需研究  相似文献   

19.
以低温煤焦油沥青为原料,分离其轻组分得到重相沥青,通过对2种沥青的组成、性质及炭化后焦样指标、微观结构对比分析,研究2种低温煤焦油沥青的性质差异,探索适合低温焦油沥青深加工利用的应用途径。结果表明:低温煤焦油沥青及重相沥青主要由饱和分、芳香分、胶质、沥青质组成,它们的含量变化,制约着原料的热反应过程;低温煤焦油沥青含有大量的饱和分,经炭化后所得焦样镜下出现大片、小片及镶嵌结构,均一性较差,此种沥青不适合直接用来制备高性能的炭素材料;低温煤焦油重相沥青中饱和分含量明显降低,胶质、沥青质含量升高,炭化后焦样的镜下结构以细镶嵌为主,有少量小片,结构均一且无单一取向性,各向同性度高,可以尝试用来制备各向同性焦炭。  相似文献   

20.
可溶性中间相沥青的制备研究   总被引:1,自引:0,他引:1  
许斌  李铁虎 《煤化工》2002,30(5):18-20,27
以净化沥青为原料 ,采用四氢萘高压氢化处理制取了氢化沥青 ,氢化沥青 H/ C原子比提高 14 %左右 ,最佳氢化温度为 4 2 0℃。以氢化沥青为原料 ,炭化热处理制备了中间相沥青 ,对炭化温度和恒温时间进行了优化选择 ,在 4 0 0℃下对氢化沥青炭化热处理 3h(升温速率为 2℃ / min) ,可制得喹啉可溶物 (QS)高达 85 %以上、TI含量为 71%和 β树脂含量为 5 8%的可溶性中间相沥青。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号