共查询到16条相似文献,搜索用时 93 毫秒
1.
福建省主馆钢屋盖系统为双层球面网壳,按几何相似比1∶200,采用有机玻璃制作了体育馆及周围建筑的模型,并进行了风洞模拟试验,测试了体育馆的幕墙及屋面内、外表面的风压,研究了体育馆双层球面网壳的抗风性能。试验表明该屋面的迎风面出现正压。分析了表面的风压分布,为结构设计提供了依据。 相似文献
2.
基于风-车-桥(线)耦合振动的风屏障防风效果研究 总被引:1,自引:0,他引:1
为考察风屏障的防风效果,通过风洞试验测试平地路基、高路堤、桥梁三种典型线路上设置不同风屏障情况下车辆的气动力系数,采用风-车-桥(线)耦合振动的分析方法研究车辆的动态响应,讨论风屏障高度、车辆线路位置及线路构造形式等因素的影响。结果表明,风屏障可有效地降低强风作用下车辆的响应,平地路基上设置2.05m风屏障时,车辆运行的瞬时临界风速可达50m/s;车辆的轮重减载率、倾覆系数及竖向加速度对车辆线路位置较为敏感;线路构造形式对背风侧车辆响应影响较大,风屏障高度相同时,高路堤上的防风效果较好。 相似文献
3.
车辆的气动特性是车辆的行车舒适及行车安全分析的基础。而车辆的气动特性不仅受到车辆外形的影响,还会受到车辆行驶的周围环境影响。基于风-车-桥耦合系统,研究车辆在大跨度桥上行驶时,车辆行驶环境不同时车辆气动特性的差别。分析车辆在桥上行驶路面粗糙度对车辆气动特性的影响,同时研究车辆静止及车辆行驶过程中,车辆气动力系数的差别。结果显示,在研究车辆的气动特性计算车辆的气动力系数过程中,所建立的车辆模型对车辆的气动力系数有较大的影响,在进行车辆的舒适度及车辆行车安全的评价过程中,需要结合车辆所处的自然环境特点,需要分别选取车辆的气动力系数进行研究。 相似文献
4.
侧风作用下静动态车-桥系统气动特性数值模拟研究 总被引:2,自引:0,他引:2
我国现阶段正处于轨道交通建设的高峰时期,线路中桥梁占有相当大的比重,车辆在桥梁上运行时构成车-桥系统共同承受侧向风的作用,车辆和桥梁间存在着显著的相互气动影响。基于数值模拟方法,对侧向风作用下车-桥体系的空气绕流场进行静动态模拟分析,将静态数值模拟气动力系数与风洞试验结果进行对比,基于动态气动统流特性,提出将桥面上方流场分为6个特征区域,并进一步分析风速和车速对车-桥系统气动特性的影响。分析表明,体系绕流状态具有三维特性,气动力随着车速和风速变化显著。研究结论对车-桥系统绕流及静动态气动荷载的确定具有一定的参考价值。 相似文献
5.
风-汽车-桥梁系统空间耦合振动研究 总被引:11,自引:0,他引:11
为了考虑侧风引起的车轮相对于桥面的侧向相对滑动,在车轮与桥面之间引入了一个特殊阻尼器,这个阻尼器的阻尼系数依赖于车辆与桥梁的竖向耦合运动。在综合考虑路面粗糙度、车辆悬挂系统以及车轮相对于桥面侧向相对滑动的基础上,提出能够考虑桥梁的静风响应、抖振响应、汽车-桥梁耦合振动、系统的时变特性以及结构几何非线性和气动荷载非线性影响的风-汽车-桥梁系统空间耦合振动分析模型,编制了相应的分析程序。该程序既可以预测不同路面粗糙度,车速以及干、湿、雪、冰路面状况下行驶于桥梁上车辆的行车安全性,也可以评价低风速下车辆驾驶舒适度以及侧风和车辆移动荷载对桥梁振动的影响。 相似文献
6.
随机车流下的风-汽车-桥梁系统空间耦合振动研究 总被引:2,自引:0,他引:2
在交通荷载观测及统计分析的基础上,获得交通状况的代表性数据,对记录的车型、车重、车距和车速进行统计,在此基础上进行随机车流模拟,编制随机车流模拟程序RTF(Random Traffic Flow),程序中首次全面引入车型、车重、车距和车速4个参数;建立可以考虑任意车辆数目、不同车道以及车辆相向行驶功能的随机车流下的风-汽车-桥梁系统空间耦合振动分析框架,编制相应的分析模块RTFWVB(Wind-Vehicle-Bridge system analvsis).以杭州湾跨海大桥为工程实例,详细研究密集、稀疏运营状态,车流单向、相向行驶以及侧风与车辆移动荷载对桥梁关键部位动力响应的影响.分析表明:密集运营状态下桥梁动力响应明显大于一般运营状态下的相应值;车流方向对桥梁振动影响不大;密集运营状态下车辆移动荷载主要决定桥梁动力响应的均值,而侧风主要影响桥梁动力响应的脉动部分,风速越大波动越显著. 相似文献
7.
8.
侧风与桥梁振动对车辆行驶舒适性影响研究 总被引:1,自引:0,他引:1
风-汽车-桥梁系统空间耦合振动是风-桥、风-汽车及汽车-桥梁系统相互作用三方面协调工作的结果,其振动特性取决于自然风特性、车辆动力特性、桥梁振动特性、车辆和桥梁气动特性相互影响等多种因素,将风、汽车、桥梁三者作为一个相互作用的系统,提出一个较为完善的风-汽车-桥梁系统空间耦合振动分析模型,编制相应的分析模块WVB(wind-Vehicle-Bridge system analysis),并嵌入到自行研发的桥梁结构动力分析软件BDANS(Bridge Dynamic ANalysis System).建立车辆驾驶员位置处驾驶舒适性评价方法.研究侧风与桥梁振动对车辆驾驶 舒适性的作用,并探讨路面粗糙度、平均风速和车速对风环境下行驶在大跨度斜拉桥上车辆驾驶舒适性的影响.研究结果表明:侧风对车辆的竖向驾驶舒适性影响不大而主要影响车辆的侧向驾驶舒适性;桥梁振动对车辆竖向驾驶舒适度影响显著并明显改变其频谱特性. 相似文献
9.
深圳京基金融中心高439m,风荷载是该超高层建筑的控制荷载。采用高频底座力天平方法对该建筑模型进行了风洞试验,考察了利用其顶部设备和避难层进行开敞形成不同的风走廊(气动措施)对结构风荷载和风致响应的影响。试验结果表明:在重现期100a敏感风向作用下结构漩涡脱落频率明显低于结构基阶固有频率;气动措施可显著抑制和削弱脱落漩涡的强度,当没有受到明显干扰影响时,气动措施显示出良好的抗风效果。不同气动措施可使重现期100a结构基底弯矩减少8.2%~21.2%,使重现期10a峰值加速度减少5.3%~16.0%;受到来自于地王大厦的干扰效应的影响,在所关注重现期风速范围内的结构风振响应为上游地王大厦的尾流所控制,影响了气动措施的控制效果,但在发生涡激共振的临界风速时气动控制措施效果显著。 相似文献
10.
11.
巨型框架刚性模型风荷载特性的风洞试验研究 总被引:3,自引:0,他引:3
给出了以矩形为基本截面形状的巨型框架结构刚性模型测压试验方法和试验内容,分析了风洞试验得到的风压值,提供了巨型框架建筑表面风压分布规律和体型系数。所得的这些结果对结构的抗风设计有较为重要的指导意义。 相似文献
12.
悬索桥施工期猫道对主缆存在气动干扰效应,从而可能对主缆的驰振性能产生一定影响。文章选取某大跨悬索桥施工期主缆尖顶型和平顶型两种施工方案中共五种工况进行研究。首先,采用3D打印技术制作主缆模型,利用风洞试验方法分别得到不考虑猫道气动干扰影响及考虑猫道气动干扰影响下五种工况的气动力系数,并进行对比分析|然后根据登哈托判据对主缆在-3°~3°风攻角范围内的驰振性能进行分析和对比。结果表明:猫道的气动干扰效应使主缆的阻力系数有所减小,升力系数也发生了明显改变|猫道对0°风攻角时主缆1#和4#驰振性能影响较大,在分析施工期主缆的驰振现象时,猫道的气动干扰效应不能忽略。 相似文献
13.
为了满足大连市贝壳博物馆的抗风安全需要,进行了刚性模型表面风压分布特性风洞试验研究。详细介绍了试验所采用的主要技术参数与基本的数据处理方法,给出了典型风向角下结构表面风压分布的等值线图和结构典型测点在不同风向角下的风压变化规律;分析了各风向角下绝对值最大的局部体型系数及其出现的位置,并将屋盖的局部体型系数与现行《建筑结构荷载规范》(GB 5009—2001)进行了对比。结果表明:屋面上表面的风荷载主要表现为负压,顶部迎风挑檐边缘较大,屋面的尾流区域较小或为正压。屋面两侧的悬挑部分及主入口处迎风时分布有大面积正压,以靠近拐角部分最大,且这部分屋面对风作用反应敏感,设计时应考虑体型系数的变号情况。 相似文献
14.
基于风洞试验的双塔楼超高层建筑风荷载与风致响应 总被引:1,自引:0,他引:1
当超高层建筑的高度和间距都比较接近的时候,相互的干扰效应对结构的表面风荷载与结构的风致响应都会产生较大影响。基于刚性模型表面测压风洞试验,得到了双塔楼超高层建筑表面各测点的风压时程。在此基础上,通过数据处理,得到结构的三维动力风荷载模型,进而分别采用频域法进行结构动力响应分析。最后,通过分析结构表面风荷载与风致响应,研究了塔楼之间的干扰对结构风荷载的影响以及对结构风致响应的影响,结果表明:当双塔连线与来流方向平行时,三维风荷载和风致响应都会明显增大,干扰效应影响十分明显。 相似文献
15.
苏通大跨越输电塔的结构形式有别于普通的钢结构杆塔,其塔身下部结构采用钢管混凝土、上部结构采用钢管,质量突变大,主要受风荷载控制,并且塔高超出GB 50009—2012《建筑结构荷载规范》的梯度风高度限制。为此,采用气动弹性模型和刚性模型的边界层风洞试验确定苏通大跨越输电塔的风致响应和气动力,基于试验数据计算不同风向角下的惯性力风振系数、位移风振系数和有效荷载风振系数,并进行对比。并通过有限元分析梯度风高度对惯性力风振系数的影响,同时将有限元分析得到的风振系数分布和加权值与DL/T 5154的风振系数规定作比较。结果表明:上述3种风振系数分布规律并不相同,由其分别确定的等效位移接近于试验值;考虑梯度风高度后,风振系数变小,分布形状影响小;苏通大跨越输电塔的惯性力风振系数加权值小于1.6,且风振系数由下到上不是单调增大。 相似文献
16.
为分析横风作用下钢桁梁上高速列车受到抖振力的空间相关性,在XNJD-3风洞实验室建立了两种大气紊流场,基于1∶29.7的车桥节段模型,采用同步测压法得到了静止列车上的抖振力分布,尝试从时域、频域两个方面分析攻角、紊流场、列车位置等参数对列车抖振力空间相关性的影响,并对试验现象及影响因素总结,提出了列车抖振力跨向相干函数的拟合公式,证实了列车侧向抖振力的相关性与顺风向脉动风的相关性较接近,升力和力矩的相关性略小于竖向脉动风的相关性,也指出了进一步的研究方向,研究结论对类似桥梁上列车运行的舒适性研究具有指导意义。 相似文献