首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对凝析气井的积液预测方法不成熟、考虑因素不全面的问题,通过Gray模型计算井筒压力、温度分布,采用P-R方程计算井筒气相与液相组成,使用修正Barnea液膜模型,计算不同井斜角、液体流量下的临界携液流量,最终建立了凝析气井积液预测模型,并使用Visual Basic语言编制相应软件。通过实例计算评价了新模型的准确性与实用性。评价结果表明,凝析气井积液预测模型可用于工程实际,能够及时诊断积液情况,提高了凝析气井积液预测方法的效率。  相似文献   

2.
目前的临界携液流量模型均未完整反映页岩气井的复杂井身结构和返排液量变化特征,无法准确预测页岩气水平井积液。为此,通过对液滴动力学和能量分析,综合考虑井筒产液量、液滴变形和造斜率变化引起的液滴能量损失,建立了页岩气井全井筒临界携液流量模型。根据最大稳定变形液滴能量平衡关系,确定了最大稳定变形液滴长轴长度;选取了适用于页岩气水平井的曳力系数和表面张力公式;根据误差分析优选了Mukherjee-Brill两相流模型计算页岩气水平井井筒压力分布。实例分析表明,与现有临界携液流量模型相比,新模型对于页岩气水平井的积液预测符合率最高,预测精度达92.3%。新模型可以准确预测积液井和接近积液井,对不积液井的积液预测精度也能满足现场应用要求,可以有效指导页岩气井积液判断与排采工艺选择。  相似文献   

3.
凝析气井中流体的流动规律与常规气井有较大差异,但目前凝析气井的临界携液流量预测仍采用常规气井的相关计算模型,从而造成预测误差较大,与现场实际情况不符。针对这一问题,基于质点分析理论和气液雾状流转换理论,首先推导出了凝析气井临界携液流量预测的通用模型,通过分析得出,影响新模型预测精确性的主要因素包括温度、压力、曳力系数、表面张力和临界韦伯数。然后经过优选得到温度、压力和表面张力的计算关系式,论证了临界韦伯数取定值的不准确性,并使用精确度对比和非线性拟合方法得到层流和湍流条件下曳力系数的计算关系式。最后分别建立了产油凝析气井和油水同产凝析气井多元耦合计算模型。现场实例计算分析结果表明,所建立的新模型预测精度超过90%,与凝析气井临界携液流量常用计算模型相比,预测精度提高了26%~41%。该研究成果对于提高凝析气井的最终采收率具有一定的指导意义。  相似文献   

4.
气井积液是产水气藏开发设计和气井生产管理面临的重要问题,但目前对气井流动机理与携液预测还存在争议。从气液两相流的基本流动机理出发,建立了考虑液滴变形和井斜影响下气井井筒的流型、温度、压力与携液综合预测模型,并用实际井数据对模型进行了验证。结果表明,所建模型可用于直井、斜井和水平井的产水气井井筒温度压力预测,预测误差小于5%;在环雾状流动情况下,井筒内液体以液滴和液膜的形式被完全带出井口,不会出现井筒积液;对常规垂直气井,利用井口数据便能判断气井积液情况,Turner模型计算气井携液临界值较实际值偏大,李闽模型计算结果明显偏小,建议采用彭朝阳模型计算气井携液临界值;对斜井和水平井,则需要同时考虑液滴变形和井斜的影响,水平井近水平段携液临界流速和流量明显较垂直井段小,而造斜井段携液临界流速和临界流量随井斜角的增大先增大后减小,在井斜角为30°~60°之间达到最大值,因此造斜井段是气井积液判断的重点部位。  相似文献   

5.
应用人工神经网络方法预测气井积液   总被引:1,自引:0,他引:1  
气井井筒积液对天然气的开采影响极大,准确地计算气井临界流量对气井开发至关重要。气井携液临界流量理论计算模型主要有液滴模型和携液率模型,然而在实际计算过程中往往会出现计算结果偏差大、不能满足工程需要等问题。文中提出一种应用人工神经网络方法预测井筒积液的新模型,该模型充分利用了气井现有的生产测试数据,简化了大量复杂的机理研究,具有更广泛的实用性。生产井的计算结果表明,应用神经网络模型预测气井积液的成功率较高,可以用来判断气井积液。  相似文献   

6.
随着大牛地气田的不断开发,气井压力逐渐降低,气井积液越来越严重,准确预测气井的临界携液流量与流速对气井的配产以及积液判断有着重要的意义。除了寻找适合本气田的临界携液流量模型外,还要考虑最大携液流量在井筒中出现的位置。为此,文中通过建立气井临界携液流量模型与井筒压力、温度分布模型,以流压测试数据为基础,对临界携液流量与流速沿井筒的分布规律展开研究。结果表明:当压力梯度小于临界压力梯度时,临界携液流量随井深增加而减小,当压力梯度大于临界压力梯度时,临界携液流量随井深增加而增加;温度梯度为分别为1.5,2.0,2.5,3.0℃/100 m,临界压力梯度分别为0.04,0.05,0.06,0.07 MPa/100 m。  相似文献   

7.
目前国内外气田现场广泛应用的气井临界携液流量模型大多是建立在直井基础之上的,将曳力系数和表面张力取为常数,没有考虑井斜角、曳力系数和表面张力变化对临界携液流量的影响.为了准确判断天然气斜井是否积液,对天然气斜井中的液滴进行受力分析,建立了新的天然气斜井临界携液流量计算模型.模型考虑到曳力系数随雷诺数变化而变化,引入GP模型计算气井中液滴的曳力系数,根据气井温度和压力数据计算出气水界面张力.结合实例,将新模型与其他5个计算模型进行对比,结果表明新模型的计算结果与现场实际数据更加吻合,准确率达95.2%.新模型可以准确计算天然气斜井临界携液流量,可为天然气斜井积液判断和合理配产提供理论支撑,对于气田合理生产具有指导作用.  相似文献   

8.
塔河凝析气井井筒积液判断标准   总被引:2,自引:0,他引:2  
刘志森 《断块油气田》2009,16(3):68-69,92
由于凝析气藏流体性质的特殊性,反凝析和气液分离常常造成井筒积液,严重影响气井产能。利用塔河凝析气井井筒积液前后的生产动态变化,求出了判断气井是否积液的临界动能因子,由此进一步计算出了各区块井的临界流量,并与李闽公式计算的结果和现场实际进行了对比,在此基础上结合实测流压梯度曲线,提出了塔河凝析气井井筒积液的判断标准。  相似文献   

9.
在深水气井测试设计中,通常采用定值曳力系数悬浮液滴理论模型判断气井测试流量是否具备携液能力。由于对深水气井全井筒携液能力预测缺乏针对性的研究,上述方法设计的携液临界条件较为保守,导致结果误差偏大,实际作业中存在着积液风险,影响了深水气井现场测试的安全性。为此,通过全域拟合方法采用雷诺数修正曳力系数得到计算关联式,据此确定适合深水气井条件的较高精度天然气物性参数,最终建立了修正参数临界携液模型。基于实际案例对模型进行对比分析,证明修正参数模型能够满足深水气井测试临界携液条件设计需要,有效解决了现有悬浮液滴理论模型采用定值曳力系数对全井段进行携液预测临界值偏小等问题,提高了预测精度。结论认为,修正参数模型针对温度、压力、凝析液气比及测试管柱内径等进行敏感性分析,较为直观了解深水气井测试管柱内临界携液条件变化趋势,为优化深水气井测试安全高效参数设计提供了技术支撑。  相似文献   

10.
考虑液滴夹带的气井连续携液预测模型   总被引:1,自引:0,他引:1  
在有水气藏开发过程中,随着气藏压力的降低和含水量的增加,井筒内的气相能量不足以将水携带到地面,导致井底积液,从而影响气井产量,严重时甚至压死气井,造成停产。准确预测气井临界携液流速对判断气井是否积液和优化气井配产具有重要的意义。基于液膜携液假设,通过气液两相流受力平衡分析,建立了考虑液滴夹带影响的气井连续携液预测模型。模型引入了基于临界液膜流量和临界气相流速的液滴夹带判据,并采用了考虑液膜雾化与液滴沉积动态过程影响的液滴夹带率计算公式。结合实际气井生产数据,所建立模型与现有的液膜临界流速模型的对比结果表明,该模型的预测结果与气井实际状况更加吻合,可用于气井积液的判断。  相似文献   

11.
目前应用广泛的临界携液流量预测模型大多以垂直井作为研究对象,并未考虑井斜角度对携液的影响,造成倾斜气井临界携液流量预测值与实际情况存在较大偏差。针对倾斜气井是否出现积液问题,基于液滴受力平衡分析,建立考虑液滴形变与井斜角度影响的气井临界携液流量预测新模型。根据能量守恒方程,推导得到临界韦伯数与液滴变形参数的函数关系式。基于椭球形液滴假设,考虑液滴内部流动及液滴形变影响,将邵明望模型计算结果下调15%作为椭球形液滴的曳力系数。结合实例与Turner模型、李闽模型、王志彬模型、杨文明模型和Belfroid模型进行对比分析发现,新模型准确程度较高,计算精度提高14.49%~16.80%,能正确判断气井积液情况,与现场实际情况吻合,可以有效指导气田安全、合理生产。  相似文献   

12.
在凝析气井中,当地层能量不足时,井筒中液体因无法排出而形成积液,导致井底压力增大,从而降低气井产能;更严重的情况可能会造成气井被压死,导致气井报废。因此,对产水凝析气井进行积液诊断至关重要。针对产水的凝析气井,以井底为连续排液的参考点,通过闪蒸计算得出凝析气井井底气油比,由此计算出井底凝析油产量,进一步计算油水混合物密度,分别带入Turner模型,Coleman模型,李闽模型进行分析计算,将不同模型计算的理论临界携液流量与气井实际产量进行对比分析,判断气井是否积液。诊断结果表明,Coleman模型和李闽模型诊断的准确率较高,Turner模型诊断的准确率相对较低。建议油田现场使用Coleman模型或李闽模型进行气井积液诊断。  相似文献   

13.
气井井筒携液临界流速和流量的动态分布研究   总被引:3,自引:3,他引:3  
随着有水气田的开发,产水气井所占比例逐年增加,准确预测气井的携液临界流量和流速对于气井配产及积液判断有着重要的意义,除了寻找适合本气田的预测模型外,还要考虑最大携液临界流量在井筒中出现的位置。为此,通过对携液临界流量和携液临界流速沿井筒分布规律的研究,认为携液临界流量与沿井筒分布气井的产液量有关,其变化直接改变了井筒温度和压力分布。产液量较小时,井筒的温度损失较大,压力损失较小,温度变化对携液临界流量的分布起主导因素,而随着产液量的增加,温度损失逐渐减小,而压力损失逐渐增加,压力变化逐渐成为影响携液临界流量分布的主导因素;携液临界流量沿井筒分布曲线出现的拐点,就是压力变化起主导因素到温度变化起主导因素的转折点;产液量较大时,最大携液临界流量往往出现在井底。研究表明,在计算气井携液临界流量时要算出沿井筒每个位置的携液临界流量值,并以较大值作为气井的携液临界流量。  相似文献   

14.
分析当前应用较为广泛的液滴模型,针对低压气井携液模型的缺点,结合气井积液实验,一定程度上揭示了气井携液的机理。分析认为,Coleman模型忽略了液滴变形对携液临界流量的影响,导致计算结果较真实的临界流量偏大;而李闽模型没能考虑椭球形液滴在井筒内翻转造成的能量损失,计算结果偏小。由实验结果可知,实测的携液临界流量处在Coleman模型与李闽模型之间,分析认为是由于液滴翻转带来的能量损失足以抵消液滴变形产生附加能量。根据液滴模型的基本原理,结合气井积液实验的结果,给出了低压气井携液模型以及计算公式,新模型中引入修正因子表征液滴翻转的影响,较真实的反应了气井携液的真实情况。新模型的计算结果与Coleman的实验数据进行比较,误差较小、预测精度较高、应用效果较好。  相似文献   

15.
准确预测气井临界携液气流量,对优化气井工作制度、排除井筒积液具有重要意义。现有液滴模型未考虑液滴变形和液滴大小的影响,将临界韦伯数取为定值或认为临界携液气流量与临界韦伯数无关,导致模型的关系式系数为定值,存在一定理论不足。综合考虑液滴变形和液滴大小特征,由液滴质点力平衡理论和能量守恒原理导出了气井临界携液气流量计算新模型。新模型的关系式系数随压力增大而变大,为1.92~5.30,弥补了现有液滴模型的关系式系数为定值的缺陷。现场应用表明:新模型预测大牛地气田气井积液状态与实际较吻合,可满足生产要求。  相似文献   

16.
凝析气井井筒动态预测方法   总被引:1,自引:0,他引:1  
凝析气井在生产过程中,随着产气量、产油量、产水量的变化,井筒中不同位置的温度、压力、气液组成、气液摩尔分数和积液情况也发生变化。在考虑井筒温度变化的基础上,分流态综合利用垂直管流公式和井筒携液计算公式,结合流体相平衡热力学闪蒸计算,运用状态方程模拟,提出了凝析气井井筒动态预测方法。实例计算表明,该方法可预测凝析气井不同生产时期井筒内不同位置的温度、压力、气液组成、气液摩尔分数和积液情况,能更好地指导凝析气井的生产。  相似文献   

17.
气井开始积液时,井筒内气体的最低流速称为气井携液临界流速,对应的流量称为气井携液临界流量.曳力系数是推导临界流速公式的重要参数,本文引用西南石油学院彭朝阳推导出的临界流速公式进行计算,经过实验验证,此公式更能较为准确地预测气井积液情况.根据所引用的临界流速公式,对某气井进行分析表明:在不改变气液的表面张力和天然气相对密度,并同时增大温度和压力的情况下,天然气的压缩系数及气体的密度会发生变化,随着温度和压力的增加,气体的临界流速增大,而临界流量随之减小.为了保证该气井能够连续携液生产,将井底的积液完全排出井口,气井在生产过程中的产气量应大于井口的临界流量.  相似文献   

18.
凝析气井在生产过程中,随着产气量、产油量、产水量的变化,井筒中不同位置的温度、压力、气液组成、气液摩尔分数和积液情况也发生变化.在考虑井筒温度变化的基础上,分流态综合利用垂直管流公式和井筒携液计算公式,结合流体相平衡热力学闪蒸计算,运用状态方程模拟,提出了凝析气井井筒动态预测方法.实例计算表明,该方法可预测凝析气井不同生产时期井筒内不同位置的温度、压力、气液组成、气液摩尔分数和积液情况,能更好地指导凝析气井的生产.  相似文献   

19.
天然气井井筒积液预测方法解析   总被引:2,自引:0,他引:2  
对于裂缝发育的边水气藏,随着气藏开发不断深入,气井必然产水.当气井产气量小于井筒携液临界流量时,井筒形成积液.气井井筒积液,造成井筒回压增大,井口油套压降低,生产能力降低,影响气井的正常生产,最终影响气藏采收率.通过气井生产动态分析、临界流量判断以及井筒积液量计算,由现象到本质系统的提出了气井井筒积液判断与预测分析方法,为积液气井合理开展排水采气工艺提供科学的依据,为有效排除气井井筒积液起到了指导性作用.  相似文献   

20.
基于倾斜气井气液两相分层流假设,考虑润湿性和表面张力对液膜沿井筒内壁周向分布的影响,通过考察气液相界面形状变化对单位管长气液两相系统势能、动能和表面自由能的影响,利用能量最小原理建立了临界条件下的气液相分布计算模型;考虑倾角的影响,建立了相界面摩擦因子计算模型并最终闭合控制方程。研究表明:低持液率流动条件下,相界面形状更容易受到壁面润湿性和表面张力的影响呈现弯曲,管径越小、持液率越小、井斜角越小、气体流速越大、气相密度越大时,相界面弯曲越明显;气井临界携液流速随井斜角的增加呈现非线性先增后减的趋势;最大临界携液流速对应的井斜角随井筒直径的增加而增大,同时也受气液两相物性的影响。该模型预测临界携液流速与临界压力梯度的平均相对误差分别为1.19%和3.02%,现场倾斜气井积液误判率2.38%,可对倾斜气井积液进行有效判断。图10表3参17  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号