首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Single Comb White Leghorn adult cockerels were fed on 50 g/kg protein diet, 200 g/kg protein diet or 50 g/kg protein diet plus urea and in vitro ammoniagenesis from urea and uric acid in the caeca was determined. 2. Four-fold protein intake caused about 4.6-fold increase in caecal ammonia production from urea (P < 0.05), and tended to increase it from uric acid as compared with 50 g/kg protein-fed birds. 3. Dietary urea significantly increased caecal ammonia production from urea and uric acid by about 2 and 3 times as much as those of control birds, respectively (P < 0.05). 4. It is concluded that increased protein intake and the feeding of urea are able to induce ammoniagenesis from urea and uric acid in the caeca of fowls.  相似文献   

2.
3.
4.
Myocardial and pulmonary beta-adrenoceptors can be imaged with 2-(S)-(-)-(9H-carbazol-4-yl-oxy)-3-[1-(fluoromethyl)ethyl]amino-2- propanol (S-1'-[18F]fluorocarazolol, I). Quantification of unmodified fluorocarazolol in plasma is necessary for analysis of PET images in terms of receptor densities. We have determined I and its radioactive metabolites in rat, sheep and human plasma, using (1) solid-phase extraction (C18) followed by reversed-phase HPLC and (2) direct injection of untreated plasma samples on an internal-surface reversed-phase (ISRP) column. The two methods were in good agreement. Unmodified I decreased from over 99% initially to less than 5%, 5-10% and 20% at 60 min post-injection in rats, sheep and human volunteers, respectively. Protein binding in sheep and human plasma was determined by ultrafiltration. The fraction of total plasma radioactivity bound to protein and the fraction representing unmodified radioligand were linearly correlated, suggesting that fluorocarazolol was more than 70% protein-bound, whereas its metabolites showed negligible protein binding. Direct injection of plasma on an ISRP column seems a convenient method for quantification of lipophilic radioligands such as fluorocarazolol.  相似文献   

5.
F1F0-ATP synthases utilize protein conformational changes induced by a transmembrane proton gradient to synthesize ATP. The allosteric cooperativity of these multisubunit enzymes presumably requires numerous protein-protein interactions within the enzyme complex. To correlate known in vitro changes in subunit structure with in vivo allosteric interactions, we introduced the beta subunit of spinach chloroplast coupling factor 1 ATP into a bacterial F1 ATP synthase. A cloned atpB gene, encoding the complete chloroplast beta subunit, complemented a chromosomal deletion of the cognate uncD gene in Escherichia coli and was incorporated into a functional hybrid F1 ATP synthase. The cysteine residue at position 63 in chloroplast beta is known to be located at the interface between alpha and beta subunits and to be conformationally coupled, in vitro, to the nucleotide binding site > 40 A away. Enlarging the side chain of chloroplast coupling factor 1 beta residue 63 from Cys to Trp blocked ATP synthesis in vivo without significantly impairing ATPase activity or ADP binding in vitro. The in vivo coupling of nucleotide binding at catalytic sites to transmembrane proton movement may thus involve an interaction, via conformational changes, between the amino-terminal domains of the alpha and beta subunits.  相似文献   

6.
ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central 'shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.  相似文献   

7.
OBJECTIVE: To compare quantitative pathologic variables assessed in primary ovarian tumors and metastatic tumor deposits in the omentum and compare their prognostic value. STUDY DESIGN: In 29 cases of advanced ovarian cancer the mean nuclear area (MNA), volume-weighted mean nuclear volume (vv), volume percentage epithelium (VPE) and mitotic activity index (MAI) were assessed in both the primary ovarian tumor and its metastatic deposits in the omentum. Differences were evaluated using the Wilcoxon rank sum test for paired observations, and coefficients of variation were calculated in each case over the values obtained from the tumor in the ovary and omentum. RESULTS: Intraobserver and interobserver reproducibility of MNA, VPE and MAI were all good to very good except for the interobserver reproducibility for vv, which was moderate. MNA and vv, correlated well, both in the primary ovarian tumor (r = .88) and omental metastasis (r = .87). No significant differences were found between the assessments of MNA, vv, and MAI in the primary ovarian tumor and its omental metastasis, whereas significant differences were found for VPE. However, in some patients the nuclei tended to be larger and the VPE lower in the omental metastasis than in the primary ovarian tumor. No important impact of the origin of tumor tissue was reflected in the prognostic value of the nuclear features. Patients were grouped prognostically differently for the assessment of MAI and VPE in the primary ovarian tumor and its omental metastasis. CONCLUSION: Quantitative pathologic variables for prognostic purposes are best assessed in the primary ovarian tumor. Measurements in the metastatic deposits may be helpful in understanding processes of metastasis in advanced ovarian cancer.  相似文献   

8.
9.
We have isolated the F0F1-ATP synthase complex from oligomycin-sensitive mitochondria of the green alga Chlamydomonas reinhardtii. A pure and active ATP synthase was obtained by means of sonication, extraction with dodecyl maltoside and ion exchange and gel permeation chromatography in the presence of glycerol, DTT, ATP and PMSF [corrected]. The enzyme consists of 14 subunits as judged by SDS-PAGE. A cDNA clone encoding the ATP synthase alpha subunit has been sequenced. The deduced protein sequence contains a presequence of 45 amino acids which is not present in the mature protein. The mature protein is 58-70% identical to corresponding mitochondrial proteins from other organisms. In contrast to the ATP synthase beta subunit from C. reinhardtii (Franzen and Falk, Plant Mol Biol 19 (1992) 771-780), the protein does not have a C-terminal extension. However, the N-terminal domain of the mature protein is 15-18 residues longer than in ATP synthase alpha subunits from other organisms. Southern blot analysis indicates that the protein is encoded by a single-copy gene.  相似文献   

10.
The alpha subunit of the mitochondrial ATP synthase is part of the F1 enzymatic complex known to bind ADP, phosphate and ATP and is at the heart of the mitochondrial energy-producing mechanism. The mouse embryonal carcinoma variant of the alpha subunit cDNA was cloned and the complete nucleotide sequences of two different lengths of clones were determined. Two distinct polyadenylation sites in the cDNA sequence were detected and two sizes of mRNAs were confirmed by Northern blot hybridization. Two putative ATP-binding motifs - A and B, have been hypothesized for this enzyme based on previous NMR work on another ATP-binding enzyme, adenylate kinase. We have constructed four deletion mutants of the alpha subunit of the mouse F1-ATP synthase to examine the putative role of these domains. The resulting recombinant proteins were expressed and purified. Functional studies with the immobilized mutants proved the significance of both sites for ATP binding.  相似文献   

11.
The synthetic precursor of the F(A)d subunit of mitochondrial ATP synthase was imported into isolated soybean cotyledon mitochondria. Import of the F(A)d precursor was accompanied by processing to a lower molecular weight mature form. The F(A)d precursor displayed the following import characteristics not seen before with plant mitochondria: efficient import in the absence of external ATP and import of wheat germ-translated precursor. Pretreatment of the F(A)d precursor with NEM did not inhibit import. Taken together with the lack of a requirement for external ATP, this indicates that this precursor does not require extramitochondrial ATP-dependent factors for import. Binding studies indicated that the F(A)d precursor bound to a proteinaceous component of the mitochondrial outer membrane. Inhibitor studies indicated that processing was most likely via the general mitochondrial processing peptidase. The results suggest that import of this subunit occurs via a pathway different from the general import pathway described for the majority of precursor proteins.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) involves motor neuron degeneration, skeletal muscle atrophy, paralysis, and death. Mutations in Cu,Zn superoxide dismutase (SOD1) are one cause of the disease. Mice transgenic for mutated SOD1 develop symptoms and pathology similar to those in human ALS. To understand the disease mechanism, we developed a simple behavioral assay for disease progression in mice. Using this assay, we defined four stages of the disease in mice expressing G93A mutant SOD1. By studying mice with defined disease stages, we tied several pathological features into a coherent sequence of events leading to motor neuron death. We show that onset of the disease involves a sharp decline of muscle strength and a transient explosive increase in vacuoles derived from degenerating mitochondria, but little motor neuron death. Most motor neurons do not die until the terminal stage, approximately 9 weeks after disease onset. These results indicate that mutant SOD1 toxicity is mediated by damage to mitochondria in motor neurons, and this damage triggers the functional decline of motor neurons and the clinical onset of ALS. The absence of massive motor neuron death at the early stages of the disease indicates that the majority of motor neurons could be rescued after clinical diagnosis.  相似文献   

13.
Previously we indicated that a specific delay in subunit c degradation causes the accumulation of mitochondrial ATP synthase subunit c in lysosomes from the cells of patients with the late infantile form of neuronal ceroid lipofuscinosis (NCL). To explore the mechanism of lysosomal storage of subunit c in patient cells, we investigated the mechanism of the lysosomal accumulation of subunit c both in cultured normal fibroblasts and in in vitro cell-free incubation experiments. Addition of pepstatin to normal fibroblasts causes the marked lysosomal accumulation of subunit c and less accumulation of Mn(2+)-superoxide dismutase (SOD). In contrast, E-64-d stimulates greater lysosomal storage of Mn(2+)-SOD than of subunit c. Incubation of mitochondrial-lysosomal fractions from control and diseased cells at acidic pH leads to a much more rapid degradation of subunit c in control cells than in diseased cells, whereas other mitochondrial proteins, including Mn(2+)-SOD, beta subunit of ATP synthase, and subunit i.v. of cytochrome oxidase, are degraded at similar rates in both control and patient cells. The proteolysis of subunit c in normal cell extracts is inhibited markedly by pepstatin and weakly by E-64-c, as in the cultured cell experiments. However, there are no differences in the lysosomal protease levels, including the levels of the pepstatin-sensitive aspartic protease cathepsin D between control and patient cells. The stable subunit c in mitochondrial-lysosomal fractions from patient cells is degraded on incubation with mitochondrial-lysosomal fractions from control cells. Exchange experiments using radiolabeled substrates and nonlabeled proteolytic sources from control and patient cells showed that proteolytic dysfunction, rather than structural alterations such as the posttranslational modification of subunit c, is responsible for the specific delay in the degradation of subunit c in the late infantile form of NCL.  相似文献   

14.
The subunit f of the yeast F1F0ATP synthase has been isolated from the purified enzyme. Amino acid composition, protein and peptide sequencing were performed. The data are in agreement with the sequence of the predicted product of the gene D9481.21 identified on the Saccharomyces cerevisiae chromosome IV. A 303-bp open reading frame encoding a 101-amino acid polypeptide is described. The deduced amino acid sequence from the ATP17 gene is 6 amino acids longer than the mature protein, which displays a molecular mass of 10567 Da. The protein is basic with a short hydrophobic segment located in the C-terminal part of the subunit. Subunit f remained associated with other F0 subunits upon sodium bromide treatment of the whole enzyme. A null mutant was constructed. The disrupted strain was unable to grow on glycerol medium and the mutation was recessive; rho- cells arose spontaneously. The null mutant mitochondria were devoid of oligomycin-sensitive ATPase, but still contained an active F1, while the subunits f, 6 and 8 were absent.  相似文献   

15.
Ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) each promote the survival and differentiation of developing motor neurons, but do so through distinct cellular signaling pathways. Administration of either factor alone has been shown to slow, but not to arrest, progression of motor neuron dysfunction in wobbler mice, an animal model of motor neuron disease. Because CNTF and BDNF are known to synergize in vitro and in ovo, the efficacy of CNTF and BDNF cotreatment was tested in the same animal mode. Subcutaneous injection of the two factors on alternate days was found to arrest disease progression in wobbler mice for 1 month, as measured by several behavioral, physiological, and histological criteria.  相似文献   

16.
17.
18.
The retinal cyclic guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) is a key regulator of phototransduction in the vertebrate visual system. PDE consists of a catalytic core of alpha and beta subunits associated with two inhibitory gamma subunits. A gene-targeting approach was used to disrupt the mouse PDEgamma gene. This mutation resulted in a rapid retinal degeneration resembling human retinitis pigmentosa. In homozygous mutant mice, reduced rather than increased PDE activity was apparent; the PDEalphabeta dimer was formed but lacked hydrolytic activity. Thus, the inhibitory gamma subunit appears to be necessary for integrity of the photoreceptors and expression of PDE activity in vivo.  相似文献   

19.
Two subunits of the yeast ATP synthase have been isolated. Subunit e was found loosely associated to the complex. Triton X-100 at a 1% concentration removed this subunit from the ATP synthase. The N-terminal sequencing of subunit i has been performed. The data are in agreement with the sequence of the predicted product of a DNA fragment of Saccharomyces cerevisiae chromosome XIII. The ATP18 gene encodes subunit i, which is 59 amino acids long and corresponds to a calculated mass of 6687 Da. Its pI is 9.73. It is an amphiphilic protein having a hydrophobic N-terminal part and a hydrophilic C-terminal part. It is not apparently related to any subunit described in other ATP synthases. The null mutant showed low growth on nonfermentable medium. Mutant mitochondria display a low ADP/O ratio and a decrease with time in proton pumping after ATP addition. Subunit i is associated with the complex; it is not a structural component of the enzyme but rather is involved in the oxidative phosphorylations. Similar amounts of ATP synthase were measured for wild-type and null mutant mitochondria. Because 2-fold less specific ATPase activity was measured for the null mutant than for the wild-type mitochondria, we make the hypothesis that the observed decrease in the turnover of the mutant enzyme could be linked to a proton translocation defect through F0.  相似文献   

20.
A cDNA clone to an abundantly expressed mRNA in cleavage stage mouse embryos has been sequenced and identified as encoding subunit 9 (P1) of the mitochondrial H(+)-ATP synthase. The deduced amino acid sequence of the mature subunit 9 protein differs in a single residue from the corresponding rat, ovine, bovine and human subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号