首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a new approach for guaranteed state estimation based on zonotopes for linear discrete-time multivariable systems with interval multiplicative uncertainties, in the presence of bounded state perturbations and noises. At each sample time, the presented approach computes a zonotope which contains the real system state. A PP-radius-based criterion is minimized in order to decrease the size of the zonotope at each sample time and to obtain an increasingly accurate state estimation. The proposed approach allows one to efficiently handle the trade-off between the complexity of the computation and the accuracy of the estimation. An illustrative example is analyzed in order to highlight the advantages of the proposed state estimation technique.  相似文献   

2.
This paper investigates the problem of robust H-infinity state estimation for a class of uncertain discretetime piecewise affine systems where state space instead of measurable output space partitions are assumed so that the filter implementation may not be synchronized with plant state trajectory transitions. Based on a piecewise quadratic Lyapunov function combined with S-procedure and some matrix inequality convexifying techniques, two different approaches are developed to the robust filtering design for the underlying piecewise affine systems. It is shown that the filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches.  相似文献   

3.
An approach to robust receding-horizon state estimation for discrete-time linear systems is presented. Estimates of the state variables can be obtained by minimizing a worst-case quadratic cost function according to a sliding-window strategy. This leads to state the estimation problem in the form of a regularized least-squares one with uncertain data. The optimal solution (involving on-line scalar minimization) together with a suitable closed-form approximation are given. The stability properties of the estimation error for both the optimal filter and the approximate one have been studied and conditions to select the design parameters are proposed. Simulation results are reported to show the effectiveness of the proposed approach.  相似文献   

4.
This paper considers a robust state estimation problem for a class of uncertain time-delay systems. In this problem, the noise and uncertainty are modelled deterministically via an integral quadratic constraint. The robust state estimation problem involves constructing the set of all possible states at the current time consistent with given output measurements and the integral quadratic constraint. This set is found to be an ellipsoid which is constructed via a linear state estimator.  相似文献   

5.
This paper considers a robust state estimation problem for a class of uncertain systems where the noise and uncertainty are modeled deterministically via an integral quadratic constraint. The robust state estimation problem involves constructing the set of all possible states at the current time consistent with given output measurements and the integral quadratic constraint  相似文献   

6.
参数摄动系统的鲁棒H ∞状态估计   总被引:4,自引:2,他引:4       下载免费PDF全文
基于Shaked提出的参数依赖型有界实引理,研究具有凸多面体参数摄动系统的鲁棒H∞状态估计问题.采用线性矩阵不等式技术,推导出此类不确定系统的全阶鲁棒H∞滤波器存在的充分条件,并将滤波器的设计转化为一个凸优化的求解问题.与传统的基于二次稳定的滤波方案相比,该滤波器设计方法具有较小的保守性.  相似文献   

7.
A parameter and state estimation problem is considered for uncertain linear time-invariant systems. Under a certain condition, it is shown that the state of the system can be asymptotically described by a linear combination of state estimates generated by suitable multiple observers, where the weights of the linear combination are the parameters to be estimated. Using this property, a computation method is proposed for simultaneous estimation of the parameters and the state from the output data of the plant and multiple observers.  相似文献   

8.
This note considers the problem of minimax state estimation of the states of a linear time-invariant system which is driven by and observed in the presence of noise processes with uncertain second-order statistics. When the process noise and observations are scalars, the problem is shown to be equivalent to a scalar minimax estimation problem. The existence of a minimax solution is thereby established, and the minimax filter is shown to be a linear transformation of the minimax filter for the scalar problem.  相似文献   

9.
In this paper, results of robust estimation of Zhou (2010a) are extended to state estimation with missing measurements. A new procedure is derived which inherits the main properties of that of Zhou (2010a). In this extension, a covariance matrix used in the recursions is replaced by its estimate which makes its asymptotic property investigation mathematically difficult. Though introducing a monotonic function and using the so-called squeeze rule, this new robust estimator is proved to converge to a stable system. Numerical simulation results indicate that the proposed estimator may have an estimation accuracy better than the estimator of Wang, Yang, Daniel, and Liu (2005).  相似文献   

10.
In this paper, we investigate state estimations of a dynamical system in which not only process and measurement noise, but also parameter uncertainties and deterministic input signals are involved. The sensitivity penalization based robust state estimation is extended to uncertain linear systems with deterministic input signals and parametric uncertainties which may nonlinearly affect a state-space plant model. The form of the derived robust estimator is similar to that of the well-known Kalman filter with a comparable computational complexity. Under a few weak assumptions, it is proved that though the derived state estimator is biased, the bound of estimation errors is finite and the covariance matrix of estimation errors is bounded. Numerical simulations show that the obtained robust filter has relatively nice estimation performances.  相似文献   

11.
This paper develops an adaptive state estimator design methodology for nonlinear systems with unknown nonlinearities and persistently bounded disturbances. In the proposed estimation scheme, the boundary layer strategy in variable structure techniques is utilized to design a continuous state estimator such that the undesirable chattering phenomenon is avoided; and the adaptive bounding technique is used for online estimation of the unknown bounding parameter. The existence condition of the adaptive estimators is provided in terms of linear matrix inequality (LMI). Since the orthogonal projection of the state estimation error onto the null space of the linear measurement distribution matrix is used in the derivation process, the update law of bounding parameter estimate is represented in terms of the available measurement error. The proposed estimator can ensure that the state estimation error is uniformly ultimately bounded (UUB) with an ultimate bound. Furthermore, using the existing LMI optimization technique, a suboptimal adaptive state estimator can be obtained in the sense of minimizing an upper bound of the peak gains in the ultimate bound. Finally, a simulation example is given to illustrate the effectiveness of the proposed design method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
由于频宽有限,或者传感器临时损坏,测量数据在网络中传输时可能会丢失.本文对一类测量数据丢失的不确定离散系统,研究了鲁棒H2状态估计问题.所有的系统矩阵的参数都属丁二给定的凸多面体区域.测量数据的丢失是随机发生的,认为它是已知概率的Bernoulli随机序列.对于所有容许的不确定和可能的数据丢失,采用线性矩阵不等式方法,给出了全阶和降阶的H2滤波器存在的充分条件.数值仿真表明本文所提方法的有效性.  相似文献   

13.
This paper deals with set-membership state estimation for continuous-time systems from discrete-time measurements, in the unknown but bounded error framework. The classical predictor–corrector approach to state estimation uses interval Taylor methods for solving the prediction phase, which are known to have poor performance in presence of large model or input uncertainty. In this paper, we show how to derive more efficient predictors by using a nonlinear hybridization method which builds hybrid automata to characterize the boundaries of reachable sets. The derived continuous–discrete set-membership predictor–corrector estimator is then tested with simulated data from a bioreactor. Our method is compared to classical continuous-time interval observers and is shown to have promising performance.  相似文献   

14.
Minimax state estimation for uncertain systems is discussed. The conservative performance of the standard minimax estimator in the absence of an intelligent adversary is reduced by a combined detectorestimator structure and an incremental mean-squared error (IMSE) performance criterion. The optimal structure is defined for a wide class of linear and nonlinear systems whose uncertain parameters are elements of some known compact space and is also obtained for convex parameter spaces. Since the complete specification of the optimal estimator detector is problem dependent, a computational procedure is outlined. In an example, the resulting combined detector-estimator is shown to increase the estimation accuracy in the incremental minimax sense by a factor of two over the standard minimax estimator.  相似文献   

15.
针对不确定噪声下的非线性系统状态估计问题, 本文提出了一种基于轴对称盒空间滤波的状态估计方法. 首先, 利用轴对称盒空间包裹线性化过程带来的误差项, 将状态函数线性化误差轴对称盒空间与噪声轴对称盒空间求取闵可夫斯基和, 得到干扰误差轴对称盒空间; 随后, 利用状态量、线性误差和测量噪声的轴对称盒空间的闵可夫斯基和, 得到系统状态预测集; 进而, 利用轴对称盒空间边界正交的性质, 将盒空间拆分为多组超平面, 构造测量更新的约束条件并得到集员包裹. 本文所提方法相比传统的椭球滤波方法而言, 降低了算法的复杂度, 减少了包裹状态可行集和线性化过程带来的余, 获得了更加紧致精确的系统状态集. 最后, 采用非线性弹簧–质量–阻尼器系统验证了本文所提算法的有效性.  相似文献   

16.
Develops a framework for state-space estimation when the parameters of the underlying linear model are subject to uncertainties. Compared with existing robust filters, the proposed filters perform regularization rather than deregularization. It is shown that, under certain stabilizability and detectability conditions, the steady-state filters are stable and that, for quadratically-stable models, the filters guarantee a bounded error variance. Moreover, the resulting filter structures are similar to various (time- and measurement-update, prediction, and information) forms of the Kalman filter, albeit ones that operate on corrected parameters rather than on the given nominal parameters. Simulation results and comparisons with ℋ guaranteed-cost, and set-valued state estimation filters are provided  相似文献   

17.
In this paper, we propose a discrete‐time nonlinear sliding mode observer for state and unknown input estimations of a class of single‐input/single‐output nonlinear uncertain systems. The uncertainties are characterized by a state‐dependent vector and a scalar disturbance/unknown input. The discrete‐time model is derived through Taylor series expansion together with nonlinear state transformation. A design methodology that combines the discrete‐time sliding mode (DSM) and a nonlinear observer design is adopted, and a strategy is developed to guarantee the convergence of the estimation error to a bound within the specified boundary layer. A relation between sliding mode gain and boundary layer is established for the existence of DSM, and the estimation is made robust to external disturbances and uncertainties. The unknown input or disturbance can also be estimated through the sliding mode. The conditions for the asymptotical stability of the estimation error are analysed. Application to a bioreactor is given and the simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the distributed state estimation problem is investigated for a class of uncertain sensor networks. The target plant is described by a set of uncertain difference equations with both discrete-time and infinite distributed delays, where two random variables are introduced to account for the randomly occurring nonlinearities. The sensor measurement outputs are subject to randomly occurring sensor saturations due to the physical limitations of the sensors. Through available output measurements from each individual sensor and its neighboring sensors, this paper aims to design distributed state estimators to approximate the states of the target plant in a distributed way. Sufficient conditions are presented which not only guarantee the estimation error systems to be globally asymptotically stable in the mean square sense but also ensure the existence of the desired estimator gains.  相似文献   

19.
The inadequacy of the standard notions of detectability and observability to ascertain robust state estimation is shown. The notion of robust state estimation is defined, and for a class of processes the conditions under which the robust state estimation is possible, are given. A method of robust, nonlinear, multi-rate, state estimator design is presented. It can be used to improve robustness in an existing estimator or design a new robust estimator. Estimator tuning guidelines that ensure the asymptotic stability of the estimator error dynamics are given. To ensure that estimation error does not exceed a desired limit, the sampling period of infrequent measurements should be less than an upper bound that depends on factors such as the size of the process dominant time constant, the magnitude of measurement noise, and the level of process–model mismatch. An expression that can be used to calculate the upper bound on the sampling period of infrequent measurements, is presented. The upper bound is the latest time at which the next infrequent measurements should arrive to ensure that estimation error does not exceed a desired limit. The expression also allows one to calculate the highest quality of estimation achievable in a given process. A binary distillation flash tank and a free-radical polymerization reactor are considered to show the application and performance of the estimator.  相似文献   

20.
This paper deals with state estimation problem for uncertain continuous‐time systems. A numerical treatment is proposed for designing interval observers that ensures guaranteed upper and lower bounds on the estimated states. In order to take into account possible perturbations on the system and its outputs, a new type of interval observers is introduced. Such interval observers consist of two coupled general Luenberger‐type observers that involve dilatation functions. In addition, we provide an optimality criterion in order to find optimal interval observers that lead to tight interval error estimation. The proposed existence and optimality conditions are expressed in terms of linear programming. Also, some illustrative examples are given. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号