首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
BACKGROUND & AIMS: Somatostatin regulates gastric function and cell proliferation. We investigated whether exogenous somatostatin modulates Helicobacter pylori proliferation in vitro. METHODS: Bacteria were cultured in 5 mL Brucella broth. Bacterial numbers of H. pylori (ATCC 43504) and Escherichia coli were calculated 48 and 5 hours after incubation, respectively, by counting the colonies on the blood agar. Chemicals were dissolved in absolute methanol and added to the broth at a final methanol concentration of 1%. Intrabacterial guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) levels were measured by radioimmunoassay. RESULTS: Somatostatin significantly suppressed H. pylori proliferation at levels at or above 10(-11) mol/L. A similar antiproliferative effect was observed with 8-bromo-cGMP. At concentrations at or above 10(-8) mol/L, dibutyryl cAMP slightly but significantly stimulated bacterial proliferation. Gastrin had no effect. Somatostatin antibody immunoglobulin G fraction blocked the antiproliferative effect of somatostatin on ATCC 43504. Scatchard plot showed that ATCC 43504 has one class of binding site with relatively high affinity (Kd, 0.31 nmol/L). Somatostatin at 10(-11) mol/L increased cGMP and cAMP in H. pylori 11-fold and 6-fold, respectively. In contrast, somatostatin neither bound E. coli nor affected its proliferation. CONCLUSIONS: Somatostatin, at a similar level in human gastric juice (approximately 10(-11) mol/L), suppresses H. pylori proliferation mediated in part by a cGMP-dependent pathway in vitro, indicating a possible inhibitory effect of somatostatin in the gastric lumen on H. pylori proliferation in humans.  相似文献   

2.
Studies were conducted to clarify the effects of nitric oxide donors NOR 3 ((+/-)-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamide, FK409), SIN-1 (3-morpholinosydnonimine) and SNAP (S-nitroso-N-acetylpenicillamine) on the accumulation of cGMP and cAMP and Ca2+ mobilization as well as ketogenesis from oleate in isolated rat hepatocytes. NOR 3 caused inhibition of ketogenesis from oleate along with stimulation of cGMP accumulation in rat hepatocytes, whereas SIN-1 and SNAP exerted no effect on ketogenesis despite their marked stimulation of cGMP accumulation. Although the nitric oxide trapping agent, carboxy-PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), antagonized the stimulation by NOR 3 of cGMP accumulation, it failed to modulate the anti-ketogenic action of NOR 3. Furthermore, neither 8-bromoguanosine-3',5'-cyclic monophosphate nor N2,2'-O-dibutyrylguanosine-3',5'-cyclic monophosphate mimicked the anti-ketogenic action of NOR 3. It is concluded in the present study that NOR 3-induced inhibition of ketogenesis in rat hepatocytes is not mediated by cGMP. The present study revealed that the remaining structure of NOR 3 from which nitric oxide had been spontaneously released had no anti-ketogenic action. We first and clearly demonstrated that nitrite production was dramatically enhanced when NOR 3 was incubated in the presence of rat hepatocytes. The mechanism whereby NOR 3 inhibits ketogenesis in rat hepatocytes will be discussed.  相似文献   

3.
Activation of beta adrenergic receptors in the isolated rabbit heart by catecholamines stimulates prostacyclin (PGI2) synthesis, which is inhibited by adenosine 3'5'-cyclic monophosphate (cAMP). The purpose of this study was to determine if activation of beta adrenergic receptors in cultured coronary endothelial cells (CEC) of rabbit heart with isoproterenol (ISOP) stimulates PGI2 synthesis and if cAMP inhibits the synthesis of this prostanoid and to investigate the underlying mechanism. Incubation of CEC with ISOP increased production of cAMP and PGI2, measured as immunoreactive cAMP and 6-keto-prostaglandin F1alpha, (6-keto-PGF1alpha), respectively. Forskolin, an activator of adenylyl cyclase, increased cAMP accumulation and inhibited ISOP-stimulated 6-keto-PGF1alpha synthesis. 8-(4-chlorophenyl-thio) cAMP also inhibited ISOP-induced 6-keto-PGF1alpha production. However, miconazole, an inhibitor of adenylyl cyclase, reduced cAMP accumulation and enhanced ISOP-stimulated 6-keto-PGF1alpha synthesis in CEC. ISOP-induced 6-keto-PGF1alpha synthesis was attenuated by C2-ceramide, an inhibitor of phospholipase D (PLD) by propranolol, a beta-AR antagonist that also inhibits phosphatidate phosphohydrolase and by the diacylglycerol lipase inhibitor 1,6-bis-(cyclohexyloximinocarbonylamino)-hexane (RHC 80267). Acetylcholine (ACh) induced 6-keto-PGF1alpha synthesis was also inhibited by these agents. Both ISOP and ACh increased PLD activity, which was inhibited by C2-ceramide but not by RHC 80267 or propranolol. ACh but not ISOP increased phospholipase A2 activity in CEC. ISOP- but not ACh-induced increase in PLD activity was attenuated by forskolin and 8-(4-chlorophenyl-thio)-adenosine 3'-5'-cyclic monophosphate and augmented by miconazole. These data suggest that beta adrenergic receptors activation promotes PGI2 synthesis in the CEC by selective activation of PLD and that cAMP decreases PGI2 synthesis by decreasing PLD activity. Moreover, beta adrenergic receptors activated PLD appears to be distinct from that stimulated by ACh.  相似文献   

4.
Nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) have recently been shown to stimulate bile acid-independent bile flow in the isolated perfused rat liver (IPRL). However, the cellular origin and mechanisms of this choleresis have not yet been determined. To address these questions, we examined the effects of NO and cGMP on bile secretion in isolated rat hepatocyte couplets (IRHC) and in isolated bile duct units (IBDU), both of which are isolated cell systems in which cell polarity is maintained and secretion can be measured directly. Changes in the area of the canalicular and ductular lumens were determined in IRHC and IBDU, respectively, as indicators of the rate of fluid secretion using video microscopy. In addition, Cl-/HCO3- exchanger activity in IBDU was evaluated by measuring changes in intracellular pH (pHi) after Cl- removal/readmission by microfluorometric methods. In the presence of HCO3-, both the NO donor, S-nitroso-acetyl-penicillamine (SNAP), and the cell-permeant cGMP analogue, dibutyryl cGMP (DBcGMP), stimulated canalicular bile secretion (P <.05), as did the cell-permeant cAMP analogue, dibutyryl cAMP (DBcAMP) (P <.05). Removal of HCO3- from the buffer completely abolished the choleretic effects of DBcGMP, but had no effect on NO-induced choleresis. In contrast, secretion in IBDU was not stimulated following incubations with SNAP or DBcGMP over 30 minutes, whereas DBcAMP and secretin, a cholangiocyte secretagogue and cAMP agonist, both had a marked effect on ductular secretion over this same time interval (P <.05). SNAP also had no effect on Cl-/HCO3- exchanger activity in IBDU, and inhibition of endogenous NO synthesis by NG-monomethyl-L-arginine (L-NMMA) did not alter secretin-induced stimulation of ductular bile secretion and Cl-/HCO3- exchanger activity. In summary, NO and cGMP stimulate bile secretion exclusively at the the level of hepatocytes, whereas cAMP mediates choleresis at both hepatocyte and bile duct levels. These findings may have important implications for the regulation of ductular bile secretion by hormones and neuropeptides, as well as under pathological conditions with increased hepatic NO synthesis.  相似文献   

5.
In vertebrate neuromuscular junctions, post-synaptic specialization includes aggregation of acetylcholine receptors (AChRs) and acetylcholinesterase (AChE). The motor nerve provides soluble factors and electrical activity to achieve this striking localization of AChRs/AChE. Calcitonin gene-related peptide (CGRP), a neuropeptide synthesized by motor neurons, is able to stimulate the expression of AChR in cultured myotubes. Similar to AChR regulation, synthesis of AChE in cultured chick myotubes is also stimulated by CGRP. Application of CGRP onto cultured myotubes stimulated the accumulation of intracellular cyclic AMP (cAMP) as well as the expression of AChE mRNA and protein. However, the enzymatic activity of AChE remained unchanged. In cultured myotubes, various drugs affecting the intracellular level of cAMP, such as N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate, cholera toxin, and forskolin, could mimic the effect of CGRP in stimulating the expression of AChE. When myotubes were transfected with cDNA encoding constitutively active mutant Galpha(s), the intracellular cAMP synthesis was increased. The increase in cAMP level was in parallel with an increase in the expression of AChE, whereas transfection of active mutant Galpha(i) cDNA decreased the cAMP level as well as the AChE expression. In addition, expression of collagen-tailed AChE was up-regulated by the cAMP pathway. These findings indicated that CGRP-induced AChE regulation is mediated by the cAMP pathway and represented the first evidence to suggest that the regulation of mRNA synthesis of AChR and AChE can be mediated by the same neuron-derived factor.  相似文献   

6.
We found that K252a, a potent inhibitor of protein kinases (PK), induced DNA re-replication of Meth-A cells, i.e., DNA synthesis at a higher DNA ploidy without undergoing cytokinesis (polyploidization). The K252a-induced polyploidization was inhibited by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, suggesting that the polyploidization is caused through inhibition of PKC. By contrast, the polyploidization was potentiated by adenosine 3':5'-cyclic monophosphate (cAMP), a cAMP-dependent protein kinase (PKA) activator. These findings suggest that the cAMP-dependent signaling pathway and diacylglycerol (DAG)-dependent signaling pathway play an important role in regulating the induction of polyploidization in Meth-A cells, through a possible "cross-talk" between the two pathways.  相似文献   

7.
The cloned human serotonin 1D (5-HT1D) receptor has been shown to inhibit adenylate cyclase while the corresponding cloned dog receptor has been characterized by its enhancement of cAMP accumulation. To resolve this apparent discrepancy, the human 5-HT1D receptor has been cloned and expressed in Chinese hamster ovary (CHO) cells and the corresponding dog receptor expressed in mutant Y1 adrenal (Y1 Kin-8) cells. It is shown that both receptors when activated by sumatriptan depress forskolin induced adenosine 3'5'-cyclic monophosphate (cAMP) accumulation by a pertussis toxin sensitive mechanism, presumably involving Gi (the adenylate cyclase inhibitory GTP transducing protein). In the absence of forskolin, the dog receptor enhances cAMP accumulation, thus activating Gs (the adenylate cyclase stimulatory GTP transducing protein). When its overriding action on Gi is blocked by pertussis toxin pretreatment, the human receptor also enhances cAMP accumulation. Thus both 5-HT1D receptors activate markedly Gi and to a lesser extent Gs and can exert opposite effects on the same effector system, adenylate cyclase.  相似文献   

8.
In the rat, circadian rhythm in melatonin is regulated by noradrenergic and neuropeptide inputs to the pineal via adenosine 3',5'-cyclic monophosphate (cAMP)- and Ca2+-dependent mechanisms. We have identified a large conductance (170 pS), voltage-dependent, nonselective cation channel on rat pineal cells in culture that shows a novel mode of modulation by cAMP. Pituitary adenylate cyclase activating peptide (PACAP), norepinephrine, or 8-Br-cAMP increase channel open probability (Po) with a hyperpolarizing shift in voltage dependence such that the channel becomes active at resting membrane potentials. The increase in Po was accompanied by a change in current rectification properties such that the channel was transformed from being inactive at rest to an inwardly rectifying cation conductance in the presence of agonist, which depolarizes the cell. This channel is calcium insensitive, is blocked by Cs+, and shows a permeability sequence: K+ > Na+ >/= NH+4 > Li+. The data suggest that PACAP and norepinephrine acting through a cAMP-dependent mechanism modulate this nonselective cation channel, resulting in a slow onset depolarization that may be important in regulation of pineal cell excitability.  相似文献   

9.
BACKGROUND & AIMS: We have shown that taurocholate (TC) and taurolithocholate (TLC) interact in vitro with normal cholangiocytes, increasing DNA synthesis, secretin receptor (SR) gene expression, and adenosine 3',5'-cyclic monophosphate (cAMP) synthesis. To further extend these in vitro studies, we tested the hypothesis that bile acids (BAs) directly stimulate cholangiocyte proliferation and secretion in vivo. METHODS: After feeding with TC or TLC (1% for 1-4 weeks), we assessed the following in vivo: (1) ductal proliferation by both morphometry and immunohistochemistry for proliferating cell nuclear antigen (PCNA) and measurement of [3H]thymidine incorporation; and (2) the effect of secretin on bile secretion and bicarbonate secretion in vivo. Genetic expression of H3-histone and SR and intracellular cAMP levels were measured in isolated cholangiocytes. RESULTS: After BA feeding, there was an increased number of PCNA-positive cholangiocytes and an increased number of ducts compared with control rats. [3H]Thymidine incorporation, absent in control cholangiocytes, was increased in cholangiocytes from BA-fed rats. In BA-fed rats, there was increased SR gene expression (approximately 2.5-fold) and secretin-induced cAMP levels (approximately 3.0-fold) in cholangiocytes, which was associated with de novo secretin-stimulated bile flow and bicarbonate secretion. CONCLUSIONS: These data indicate that elevated BA levels stimulate ductal secretion and cholangiocyte proliferation.  相似文献   

10.
In previous experiments, it was shown that migration of electropermeabilized human neutrophils induced by a combination of cGMP and cAMP markedly lower relative to that induced by cGMP or cAMP alone. However, when cGMP was replaced with 8-(para-chlorophenylthio-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP), a metabolic stable analogue of cGMP which does not affect the activity of cGMP-regulated phosphodiesterases (PDEs), migration in the presence of cAMP was enhanced in an additive way. To investigate the role of cyclic nucleotide breakdown during neutrophil migration in more detail, specific inhibitors of phosphodiesterase type III (PDE-III) (cGMP-inhibited) were used. Milrinone and cilostamide inhibited migration induced by an optimal concentration of cAMP. This revealed that inhibition of cAMP breakdown, by prolonging the action of an otherwise optimal concentration of cAMP, led to decreased migration, in accordance with the observation that the effect of cAMP on migration of electropermeabilized neutrophils was biphasic. Furthermore, it was found that a combination of 8-pCPT-cGMP and milrinone/cilostamide could substitute for cGMP in both activating cGMP-dependent protein kinase (8-pCPT-cGMP) and inhibiting PDE-III (milrinone/cilostamide). In conclusion, evidence is presented that cGMP and cAMP could interact on the level of PDE-III during neutrophil migration.  相似文献   

11.
We studied adrenergic regulation of cellular cAMP in neonatal rat ventricular myocytes. Since cAMP content depends on synthesis, breakdown and egress, the contribution of each of these mechanisms was assessed. In the presence of the phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, cAMP accumulation stimulated by the beta-adrenoceptor agonist (-)-isoprenaline was diminished when the mixed alpha + beta adrenoceptor agonist (-)-noradrenaline was coincubated with (-)-isoprenaline. Moreover, adenylyl cyclase activation stimulated by (-)-isoprenaline was decreased by (-)-noradrenaline and by the selective alpha 1-adrenoceptor agonists (-)-phenylephrine and methoxamine, suggesting that alpha-adrenoceptor agonism regulates cAMP metabolism through its effect on the synthetic pathway. Evidence for alpha 1-adrenoceptor mediation of this response was enhancement of (-)-noradrenaline-induced cAMP generation by the selective alpha 1-adrenoceptor antagonist terazosin (10 nmol/l). The selective alpha 2-adrenoceptor antagonist yohimbine (10 nmol/l) had no effect. The alpha 1-adrenoceptor mediated depression of (-)-isoprenaline-stimulated cAMP generation and adenylyl cyclase activation was prevented by terazosin and in separate experiments markedly enhanced by pertussis toxin pretreatment, suggesting involvement of a guanine-nucleotide regulatory protein in this process. Occupation of the alpha 1-adrenoceptor by (-)-noradrenaline did not accelerate the rate of cAMP breakdown in the absence of phosphodiesterase inhibition. Furthermore, there was no enhancement of total phosphodiesterase activity by (-)-noradrenaline in the presence of (-)-propranolol. By contrast, pertussis toxin pretreatment augmented phosphodiesterase activity. Neither pertussis toxin nor (-)-noradrenaline increased cAMP egress. We conclude that in rat neonatal cardiac myocytes agonist occupation of the alpha 1-adrenoceptor inhibits beta-adrenoceptor stimulated cAMP accumulation most likely by coupling to a guanine nucleotide inhibitory protein.  相似文献   

12.
The mass spectrometric behaviour of six cyclic nucleotide analogues which activate cyclic AMP-dependent protein kinase was studied by positive-ion fast-atom bombardment (FAB) and collision-induced dissociation (CID) mass-analysed ion kinetic energy (MIKE) spectrometry. The compounds studied were 1,N6-ethenoadenosine-3',5'-cyclic monophosphate, (epsilon-cyclic AMP) and 2'-aza-1,N6-ethenoadenosine-3',5'-cyclic monophosphate, which each activate both isoforms of cyclic AMP-dependent protein kinase and have similar affinity for both the 'fast' and the 'slow' regulatory site of each isoform, N6-phenyl-cyclic AMP, which is selective for the 'fast' regulatory site of each isoform, and 6-chloropurine riboside-3',5'-cyclic monophosphate, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3',5'-cyclic monophosphate and 8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphate, which are each selective for the 'slow' regulatory site and preferentially activate isoform II. The FAB- and CID/MIKE spectra of the analogues are discussed in relation to their use in studies of the regulation of protein kinase activity by quantitative FAB mass spectrometry.  相似文献   

13.
Bone morphogenetic protein (BMP), a member of the transforming growth factor superfamily, is one of the most potent growth factors that stimulate osteoblast differentiation and bone formation. We investigated the effects of recombinant human BMP-2 (rhBMP-2) on osteoblast differentiation and matrix metalloproteinase-1 (MMP-1) production in human bone cells (HBC) isolated from mandibulae of 3 adult patients. rhBMP-2 at concentrations over 50 ng/ml significantly stimulated alkaline phosphatase activity and parathyroid hormone (PTH)-dependent 3', 5'-cyclic adenosine monophosphate accumulation, which are early markers of osteoblast differentiation, in HBCs. rhBMP-2 (500 ng/ml) also enhanced the level of PTH/PTH related-peptide receptor mRNA expression in HBCs. Although neither HBCs untreated nor treated with rhBMP-2 produced measurable amounts of osteocalcin, which is a marker of more mature osteoblasts, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced ostocalcin mRNA expression and its protein synthesis in these cells. rhBMP-2 inhibited 1,25(OH)2D3-induced osteocalcin synthesis in HBCs at both the mRNA and protein level. rhBMP-2 also significantly suppressed MMP-1 production and MMP-1 mRNA expression at concentrations over 500 ng/ml. These results suggest that rhBMP-2 exerts anabolic effects on human osteoblastic cells derived from mandibulae by stimulation of osteoblast differentiation and down-regulation of MMP-1 synthesis.  相似文献   

14.
Maintaining high levels of intracellular cyclic AMP (cAMP) is known to inhibit the growth of various proliferating cells including hepatocytes. We show here that transient (30 min) elevations of cAMP induced by addition of 8-bromo-cAMP (1 mmol/L) to rat hepatocytes in primary culture at three time points (12 h, 16 h and 20 h) after seeding stimulated DNA synthesis. Sustained levels of cAMP stimulated DNA synthesis to a lesser degree at a lower concentration (1 mumol/L), but inhibited it at concentrations higher than 100 mumol/L. We also determined cyclin-dependent kinase 2 (cdk2) activity in the hepatocytes during this incubation period. The transient addition of 8-bromo-cAMP at the late G1 phase increased cdk2 activity. This suggests that transient cAMP elevation in hepatocytes at the late G1 phase has a growth stimulation effect. Up-regulation of cdk2 activity may have a role in this process.  相似文献   

15.
This study investigated the effects of the adenosine 3',5'-cyclic monophosphate (cAMP) phosphodiesterase inhibitors caffeine, theophylline, and 3-isobutyl-1-methyl-xanthine (IBMX) on the proliferation and viability of the small cell lung carcinoma (SCLC) cell lines NCI-H345, NCI-H128, and SCC-9. These effects were correlated with the ability of the drugs to induce intracellular Ca2+ mobilization. Treatment of NCI-H345 cells with caffeine resulted in rapid mobilization of Ca2+, as indicated by Fura-2 fluorescence. Incubation of NCI-H345 cells with 6.25 mM caffeine resulted in a 62% inhibition of [3H]thymidine uptake after 2 hr, indicating reduced DNA synthesis. Incubation with 25 mM caffeine resulted in almost total inhibition of [3H]thymidine uptake after 2 hr. Similar effects on [3H]thymidine uptake were seen upon treatment of NCI-H128 and SCC-9 cells with caffeine; however, these cells did not exhibit caffeine-induced Ca2+ mobilization. Inhibition of DNA synthesis (66-93%) also occurred upon incubation of all cell lines with theophylline and IBMX, which did not mobilize Ca2+. Treatment of NCI-H345, NCI-H128, and SCC-9 cells with caffeine, theophylline, or IBMX markedly reduced cell viability. Levels of cAMP increased in the cells following treatment with caffeine, theophylline, or IBMX, reflecting the ability of these drugs to inhibit cAMP phosphodiesterase. These results suggest that the decrease in DNA synthesis and the subsequent cell death induced by these drugs are due to reduced cAMP phosphodiesterase activity, rather than to changes in intracellular Ca2+. These findings indicate that drugs that alter cAMP signaling pathways are potentially valuable agents to inhibit SCLC survival.  相似文献   

16.
The depolarization of adult and neonatal rat facial and spinal motoneurones by 5-hydroxytryptamine (5-HT) in part involves an enhancement of the hyperpolarization-activated, inward-rectifier, IH. Under experimental conditions which promote this action, 5-HT evokes an inward current which can be mimicked by intracellularly applied adenosine 3',5'-cyclic monophosphate (cAMP) and potentiated by the cAMP-specific phosphodiesterase inhibitor Ro 20-1724. In this study, we show that this action of 5-HT can be blocked by the adenylyl cyclase inhibitors 2'3'-dideoxyadenosine (2',3'-DDA). 5'-adenylimidodiphosphate (AMP-PNP) and SQ-22536 (9-(tetrahydro-2-furyl)adenine), but not by external or internal application of the protein kinase inhibitors H-7, staurosporine and chelerythrine. The most recently cloned 5-HT receptor subtypes, 5-HT4, 5-HT6 and 5-HT7, can all stimulate adenylyl cyclase when activated. In the presence of internal GTP-gamma-S, 5-HT irreversibly enhanced IH. The 5-HT-induced inward current could be reversibly blocked by methysergide, but not by the 5-HT4 receptor antagonist GR-113808A, the 5-HT6 and 5-HT7 antagonist clozapine and the 5-HT1A antagonist WAY-100365. 5-Methoxytryptamine (5-MeOT) and 5-carboxamidotryptamine (5-CT) mimicked the action of 5-HT with a rank order of potency of 5-HT = 5MeOT > 5-CT. Surprisingly, 8-hydroxy-2-(di-N-propylamino)-tetralin (8-OH DPAT), a 5-HT1A and 5-HT7 agonist was inactive on facial motoneurones unlike its reported agonist action on spinal motoneurones. It is proposed that cAMP produced by 5-HT-mediated stimulation of adenylyl cyclase acts in a phosphorylation-independent manner, possibly directly, on the IH channel. The 5-HT receptor subtype mediating this response cannot be correlated with any of the classified 5-HT receptor subtypes that stimulate adenylyl cyclase.  相似文献   

17.
BACKGROUND: We investigated the direct effects of propylthiouracil (PTU) on corticosterone secretion both in vivo and in vitro. METHODS: Male rats were divided into 4 groups and then injected subcutaneously with saline, PTU, PTU plus thyroxine (T4), or T4 once daily for 2 weeks. After 2 weeks, rats were decapitated or received adrenocorticotropic hormone (ACTH), intravenously. Zona fasciculata-reticularis (ZFR) cells from normal, saline-, PTU-, PTU plus T4-, or T4-treated rats were incubated with ACTH, forskolin, 8-Br-cAMP, deoxycorticosterone (DOC) +/- PTU (1, 2, or 5 mg/mL) at 37 degrees C for 2 hours. Corticosterone concentrations in plasma and cell media, and 3':5'-cyclic adenosine monophosphate (cAMP) production in ZFR cells were determined by radioimmunoassay. The effects of PTU on the activities of steroidogenic enzymes in ZFR cells were measured by the amounts of intermediate steroidal products separated by thin-layer chromatography. RESULTS: The basal and ACTH-stimulated levels of plasma corticosterone in PTU-treated rats were lower as compared to saline-treated animals. Both basal and ACTH-stimulated corticosterone secretion were inhibited by PTU > 2 mg/mL in rat ZFR cells. The cAMP production induced by forskolin was lower in PTU, PTU plus T4, or T4-treated rats than in saline-treated animals. Chronic administration of PTU or PTU plus T4 inhibited the 3 beta-hydroxysteroid dehydrogenase, 21 beta-hydroxylase, and 11 beta-hydroxylase activities. Administration of PTU (1, 2, and 5 mg/mL) suppressed the basal, ACTH, 8-Br-cAMP, forskolin, and DOC-stimulated corticosterone secretion in rat ZFR cells. Likewise, PTU > 2 mg/mL inhibited the ACTH and 8-Br-cAMP-stimulated levels of intracellular cAMP in rat ZFR cells. CONCLUSIONS: These results suggest that PTU counteracts both basal and ACTH-induced adrenal steroidogenesis through their attenuation of the activity of 11 beta-hydroxylase and cAMP production in rat ZFR cells.  相似文献   

18.
Both Ca2+ and adenosine 3',5'-cyclic monophosphate act as intracellular second messengers in pepsinogen secretion from chief cells. However, the role of intracellular guanosine 3',5'-cyclic monophosphate (cGMP) in this process has not been defined. Although dibutyryl cGMP (dbcGMP), a membrane-permeable derivative of cGMP, has been shown to inhibit pepsinogen secretion only stimulated by cholecystokinin (CCK), the intracellular mechanism of this effect remains unclear. We evaluated the role of intracellular cGMP in pepsinogen secretion from monolayer cultured guinea pig chief cells using dbcGMP and sodium nitroprusside, both of which increase intracellular cGMP. Dibutyryl cGMP and sodium nitroprusside have now been shown to inhibit pepsinogen secretion induced by not only CCK octapeptide but also carbamylcholine chloride and ionomycin in a dose-dependent manner. Furthermore, dbcGMP reduced the increase in intracellular free Ca2+ concentration induced by carbamylcholine chloride, CCK octapeptide, and ionomycin. These results suggest that intracellular cGMP may inhibit pepsinogen secretion by reducing the intracellular free Ca2+ concentration.  相似文献   

19.
Current organ preservation strategies subject graft vasculature to severe hypoxia (PO2 approximately 20 Torr), potentially compromising vascular function and limiting successful transplantation. Previous work has shown that cAMP modulates endothelial cell (EC) antithrombogenicity, barrier function, and leukocyte/EC interactions, and that hypoxia suppresses EC cAMP levels. To explore the possible benefits of cAMP analogs/agonists in organ preservation, we used a rat heterotopic cardiac transplant model; dibutyryl cAMP added to preservation solutions was associated with a time- and dose-dependent increase in the duration of cold storage associated with successful graft function. Preservation was also enhanced by 8-bromo-cAMP, the Sp isomer of adenosine 3',5'monophosphorothioate, and types III (indolidan) and IV (rolipram) phosphodiesterase inhibitors. Neither butyrate alone nor 8-bromoadenosine were effective, and the cAMP-dependent protein kinase antagonist Rp isomer of adenosine 3',5'monophosphorothioate prevented preservation enhancement induced by 8-bromo-cAMP. Grafts stored with dibutyryl cAMP demonstrated a 5.5-fold increase in blood flow and a 3.2-fold decreased neutrophil infiltration after transplantation. To explore the role of cAMP in another cell type critical for vascular homeostasis, vascular smooth muscle cells were subjected to hypoxia, causing a time-dependent decline in cAMP levels. Although adenylate cyclase activity was unchanged, diminished oxygen tensions were associated with enhanced phosphodiesterase activity (59 and 30% increase in soluble types III and IV activity, respectively). These data suggest that hypoxia or graft ischemia disrupt vascular homeostasis, at least in part, by perturbing the cAMP second messenger pathway. Supplementation of this pathway provides a new approach for enhancing cardiac preservation, promoting myocardial function, and maintaining vascular homeostatic properties.  相似文献   

20.
The effects of two cell-permeable cyclic AMP analogues, 8-chloro cyclic AMP (8-Cl cAMP) and 8-(4-chlorophenylthio) cyclic AMP (8-CPT cAMP), on cholesterol esterification, cholesteryl ester hydrolysis and bile acid synthesis were compared in cultured rat and hamster hepatocytes. Cholesterol esterification, as measured by the incorporation of [3H]oleate into cholesteryl ester, was increased by 58-88% by the analogues in rat hepatocytes and by 33-43% in hamster cells. The response in rat hepatocytes, however, was observed after a relatively short incubation time (28% increase after 1 hr), whereas that in hamster cells required a longer period (36% after 12 hr) to become apparent. The activity of the cytosolic neutral cholesteryl ester hydrolase in rat hepatocytes was also stimulated by both cyclic AMP analogues (31-37%, but the microsomal activity was unaffected. In hamster hepatocytes, however, microsomal cholesteryl ester hydrolase activity was increased (47-80%) in the presence of 8-Cl cAMP or 8-CPT cAMP. Bile acid synthesis was increased by 8-CPT cyclic AMP in rat cells (approximately 25%) but was unchanged by both analogues in hamster hepatocytes. These results indicate significant differences in the way in which cholesterol metabolism responds to cyclic AMP in cultured rat and hamster hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号