首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
基于自行设计的小型太阳能热化学反应器,建立了聚集辐照下甲烷水蒸气重整数学模型,该模型耦合导热、对流、辐射以及化学反应动力学,计算得到了反应器内甲烷重整过程反应物及产物的浓度、反应速率及温度场的分布,获得了不同工况参数(孔隙率、气体入口温度、水碳比)对甲烷转化率的影响规律.研究结果表明:甲烷水蒸气重整在多孔区域入口处反应...  相似文献   

2.
为了较为系统地认识甲烷水蒸气重整反应对内燃机性能的影响。应用HSC 5.1软件对甲烷水蒸气重整反应在不同反应温度和水碳比的工况下进行分析,然后应用Chemkin-pro程序,计算了在相同供热量下甲烷水蒸气重整气在不同物质的量比下比CH_4的燃CH_4消耗降低率。结果表明,提高反应温度和水碳比可提高CH_4的转化率;当温度为700℃、水碳比为3时,发热量提高了13.58%,在供热相同情况下,燃CH_4消耗量可减少11.96%,CH_4的转化率越高,循环效率越高;重整气效率比纯天然气高,随着物质的量比降低,重整气优势降低。  相似文献   

3.
《石油化工》2015,44(6):689
以浸渍法制备的Co-La-Ni/Al2O3为催化剂,在固定床反应器中对生物质甘油水蒸气重整制氢反应进行了研究;考察了反应温度、重时空速及进料中水与甘油中碳的摩尔比(水碳比)对反应的影响,同时考察了催化剂的稳定性并对积碳进行分析。实验结果表明,氢产率、潜在氢产率和气相碳转化率随重时空速的增加而逐渐下降,随温度的升高而增大;水碳比的增加在一定程度上有助于促进氢产率、潜在氢产率和气相碳转化率的提高;随反应时间的延长,催化剂的活性因积碳的产生略有降低,反应20 h后趋于稳定。在温度为700℃、水碳比为3、重时空速为2.5 h-1的条件下,氢产率和潜在氢产率分别达到118.15 g/kg和136.41 g/kg,气相碳转化率达到96.36%。对于甘油水蒸气重整制氢反应,Co-La-Ni/Al2O3催化剂具有较好的催化作用及稳定性。  相似文献   

4.
《天然气化工》2015,(4):57-63
通过分析和简化合成气制天然气甲烷化工艺流程,建立了第一甲烷化绝热固定床反应器的一维数学模型,采用Runge-Kutta法求解数学模型。对合成气甲烷化反应动力学模型中的甲烷化反应平衡常数进行了计算分析和调整,用Matlab计算了第一甲烷化反应器中浓度和温度分布。考察了反应器各个操作参数对床层的影响,综合各种参数影响因素,反应器较优的操作条件如下:合成气的进料速度800kmol/h,进料温度553K,操作压力为3MPa,氢碳比在3左右,循环比为3。在此条件下,第一甲烷化反应器的出口温度在873 K左右,CO的转化率为82.18%,出口气体中CH4的干基的物质的量分数达到57.07%,满足工业生产要求,为工业化反应器设计提供了理论依据。  相似文献   

5.
二甲醚水蒸气重整制氢过程的热力学分析   总被引:2,自引:1,他引:1  
对二甲醚水蒸气重整制氢体系进行了热力学分析,考察了反应温度、压力、水醚进料比等因素对体系平衡组成的影响,探讨了反应体系达到热力学平衡时二甲醚转化率、氢气产物等的变化情况。分析发现,二甲醚平衡转化率分别随水醚比的增大和温度的增高而增大,随压力升高而降低;氢气组分含量分别随温度和压力的升高略有减少,随水醚比的增加先增后减。反应在水醚比为3~6、温度为200℃~300℃及压力为0.1MPa的条件下,可得到较高的氢气产率与选择性,较好的二甲醚转化率,副产物一氧化碳及甲醇含量较少。  相似文献   

6.
《天然气化工》2016,(3):30-36
通过对CO甲烷化反应体系热力学计算,考察了反应条件和原料组成对平衡组成、平衡转化率以及CH_4选择性和积炭的影响。计算结果表明,反应温度、压力、氢碳比和汽气比对CO平衡转化率、CH_4选择性和积炭有明显影响,其中,低温、高压和高氢碳比有利于提高CO转化率和CH_4选择性,而升高压力、增加氢碳比以及向原料气中加入水蒸气均能有效地减少积炭。另外,用Ni/MgO-Al_2O_3催化剂考察了反应条件和原料气组成对CO转化率、CH_4选择性以及积炭的影响,实验结果,反应温度、压力、氢碳比和汽气比对催化剂的CO转化率、甲烷选择性以及积炭的影响明显,并与热力学平衡计算的结果基本一致。  相似文献   

7.
利用浸渍法制备了合成气耐硫变换-甲烷化Mo/TiO_2催化剂,采用正交实验考察了温度、水气体积比、氢气含量、一氧化碳含量和压力等因素对耐硫变换-甲烷化反应Mo/TiO_2催化剂反应性能的影响,并用极差分析法进行了分析,建立了包括15个动力学模型参数的耐硫变换-甲烷化催化剂动力学方程,探讨了动力学方程的适用性。实验结果表明,温度、水气体积比、氢气含量、一氧化碳含量和压力等因素对不同优化目标的影响不同;在实验考察的条件范围内,所建立的反应动力学方程的计算值与实验值较为一致,可以准确描述一氧化碳、氢气、二氧化碳、甲烷、乙烷等主要组分的反应速率,满足工业反应器的设计需要。  相似文献   

8.
王保伟  杨宽辉  许根慧 《石油化工》2007,36(11):1099-1103
运用4个介质阻挡放电反应器,考察了甲烷介质阻挡放电等离子体转化过程中,高压电极位置、放电间隙、内电极形式、氢气与甲烷的体积比、空气冷却方式等因素对甲烷转化率和产物分布的影响。实验结果表明,高压加于外电极时甲烷的转化率明显低于加于内电极时甲烷的转化率;对外电极进行空气冷却后,反应温度升高速率变缓,可将反应温度控制在理想范围(60~150℃)内,同时可获得较高的甲烷转化率,且操作安全。反应器参数对甲烷转化率有明显的影响,而对产物分布影响不显著,主要产物为乙烷、乙烯和丙烷。在反应系统中加入氢气,在氢气与甲烷的体积比为1.50时,C2烃选择性为74.50%。  相似文献   

9.
基于吉布斯自由能最小法,分析甲烷二氧化碳自热重整(CO_2/CH_4/O_2重整)工艺过程,可知:温度增加,合成气中甲烷含量减少、二氧化碳转化率增加;压力增加,合成气中甲烷含量增加、二氧化碳转化率降低;碳碳比n(CO2)/n(CH4)增加,合成气中甲烷含量减少、二氧化碳转化率降低;温度、压力对氢碳比n(H_2)/n(CO)有影响,但n(CO_2)/n(CH_4)对n(H_2)/n(CO)影响更为显著;少量或适量水蒸气可以保护甲烷二氧化碳自热重整转化炉内关键设备、调节产物n(H_2)/n(CO)等。根据工业生产要求和特点,定义出口合成气中甲烷的物质的量分数1%为临界条件,获得临界条件时n(CO_2)/n(CH_4)、重整平衡温度与压力、二氧化碳转化率以及n(H_2)/n(CO)等特性参数的关系图,指导工业生产的工艺过程和催化剂研究。  相似文献   

10.
以工业上顶烧式制氢转化炉为研究对象,建立制氢反应器的一维拟均相数学模型。使用Matlab软件采用四阶龙格-库塔算法求解数学模型,模拟分析了反应管内催化剂床层温度和各组分的浓度分布;研究了甲烷蒸汽重整制氢工艺条件的变化对甲烷转化率和工艺气出口温度的影响规律。结果表明:水碳比、炉膛温度和入口温度的增加及空速的降低均会提高甲烷转化率和工艺气出口温度,而入口压力的变化的影响并不显著。本文所得结论对实际生产中甲烷重整制氢工艺条件的优化有一定参考意义。  相似文献   

11.
《石油化工》2015,44(8):996
采用热等离子体热解装置(反应器内径为30 mm、长50 mm),以氩气和氢气混合气为工作气体,对焦油残渣进行热解,考察比焓、热等离子体工作气体中氢气的含量对焦油残渣热解的影响。实验结果表明,随比焓和工作气体中氢气含量的增大,焦油残渣转化率、乙炔产率、气体产物产率均增加;适宜的比焓为18.00 MJ/kg、工作气体中的氢气含量为60%(φ),在此条件下,焦油残渣的转化率可达54.3%,乙炔产率达13.6%,气体产率达35%;焦油残渣中的残碳和灰分对其热解有不利的影响。  相似文献   

12.
在固定床反应器中,研究了不同氢碳比、水蒸气加入量以及压力条件下,工业合成甲烷催化剂Ni-MgOAl2O3的积碳情况,结果表明:在以模拟焦炉气(氢碳比5.0)为原料气,压力2.0 MPa,水蒸气加入量10%的工艺条件下镍基催化剂性能更稳定。  相似文献   

13.
氢气由于燃烧发热量高、储量丰富、环境友好,被誉为“21世纪绿色清洁能源”,近年来,甲烷水蒸气重整制氢方法备受关注。但是甲烷重整反应的复杂性及反应机理的不确定性是制约甲烷水蒸气重整制氢工业生产的重要因素。从甲烷水蒸气重整制氢过程、反应机理、热力学分析、催化剂种类以及反应器选择5个方面对重整过程进行了归纳与分析;阐述了甲烷水蒸气重整制氢过程中吉布斯自由能的变化趋势、工况参数对重整反应的影响规律、重整过程反应器的选择、重整反应过程的微观机理以及不同催化剂对重整反应的影响程度;全面总结了甲烷水蒸气重整制氢过程的变化规律;展望了甲烷水蒸气重整制氢的发展前景与研究方向。  相似文献   

14.
在固定床反应器中,对适合富甲烷气自热转化要求的Ni/α-Al2O3催化剂进行了一系列的工艺条件试验,考察了温度、压力、空速、水碳比和氧碳比对甲烷转化率、氢收率和CO选择性的影响,并进行了120h的寿命试验。结果显示,在甲烷空速GHSV=2000h-1,nH2O/nCH4=1.0,nO2/nCH4=0.6,P=0.5MPa,T=1073K的条件下,甲烷转化率、氢收率和CO选择性分别一直保持在96.7%、70.8%和62.4%左右,以上结果表明该催化剂具有很好的稳定性和较高的活性。  相似文献   

15.
基于Aspen Plus建立了1 MWth煤化学链气化模型,探讨了气化过程中不同煤种(宁夏煤、新疆煤、云南煤)、不同载氧体(赤铁矿、锰矿)、温度、氧/碳摩尔比、压力、水蒸气/煤质量比对合成气组分的影响及实现系统自热平衡运行的条件。结果表明:在700~1200 ℃范围内,随着反应温度升高,3种煤合成气产率及冷煤气效率先增加后趋于平缓;水蒸气/煤质量比在0.5~1.5范围内增大、压力在0.1~3.0 MPa范围内增加都会使合成气产率降低;随氧/碳摩尔比在0.1~1.7范围内增大,合成气产率显著降低,系统由外部供热变为向外放热;当系统实现自热平衡运行时,赤铁矿和天然锰矿载氧体的氧/碳摩尔比分别为1.1和1.5;在保证反应速率和经济成本的前提下,优先选择天然锰矿石作为载氧体。  相似文献   

16.
《天然气化工》2016,(3):76-81
建立了甲烷化反应绝热温升模型,推导了绝热操作线,探讨了循环比对甲烷化工艺的影响。计算结果表明,当反应温度低于600℃时,CO平衡转化率可达95%,随着温度继续升高,平衡转化率迅速下降,当温度为850℃时,其平衡转化率为零。经过5级无循环绝热反应器后,CO转化率达到99.9%,一级反应器出口温度811.35℃,反应温升达531.35℃。循环比0~1范围内,经过五级反应器后,CH_4产率大于97.8%,得到的产品气高位热值≥35.35MJ/m3,远高于GB17820-2012要求的二类质量标准,比较接近于一类质量标准。设置循环工艺能够显著降低床层温度。  相似文献   

17.
对生物质低温气化及催化重整制氢进行了研究。在流化床反应器中考察了较低的气化温度下气相停留时间(12~22s)对气、液、固三相及氢气产率的影响;同时在固定床反应器中对流化床反应器中较长停留时间下的气态产物进行了催化重整,考察了温度和催化剂粒径对氢气产率的影响。实验结果表明,在气化温度600℃下,气体、固体和氢气产率随气相停留时间的延长而增大,液体产率则相反;经过流化床反应器内较长停留时间的焦油只有在催化重整温度高于800℃时才有大幅的裂解;催化剂宜在接近原始尺寸的条件下使用;在气化温度600℃、气相停留时间16s、催化重整温度900℃、GHSV=1716h~(-1)、催化剂粒径大于5mm时,可获得1447.32 mL/g的氢气产率、47.50 mL/g的CO产率和7.20 mL/g的甲烷产率。  相似文献   

18.
传统甲烷蒸汽重整(SMR)反应器(cSMR反应器)中容易出现较大的径向温度梯度,增加了催化剂积炭失活的风险。提出了一种新型的含内外管欧姆加热蒸汽重整固定床反应器(eSMR反应器),以欧姆加热替代了传统工业反应器的燃烧供热方式。通过二维拟均相固定床反应器模拟,比较了eSMR与cSMR反应器的性能差异,分析了eSMR反应器结构及操作条件对其性能的影响。结果表明,相比于cSMR,eSMR反应器出口的平均甲烷转化率和平均温度分别高出26.6%和121 K,且径向温度分布更加均匀;eSMR反应器的内外管直径之比为0.589时,其径向温度梯度最小;增加入口温度、加热电压和水碳比均会提高eSMR反应器出口的平均甲烷转化率和平均温度,增加入口压力的影响相反。本研究可为欧姆加热蒸汽重整反应器的开发提供一定的借鉴。  相似文献   

19.
甲烷蒸汽重整MCFC重整器的研究   总被引:3,自引:0,他引:3  
以MCFC(熔融碳酸盐燃料电池)应用为背景,从提高MCFC整个系统能效的角度出发,研究以电池堆为热源给反应器供热,并且出口气满足MCFC要求的甲烷蒸汽重整反应的各种工况条件。整个实验以MCFC的工作温度为基础,研究了温度、水碳比、空速等反应条件下的重整结果。当反应条件为温度650℃、水碳比6、空速403h-1、压力0 3MPa时,出口气体可以较好地满足MCFC工作要求。  相似文献   

20.
以K2CO3和内蒙褐煤为研究对象,在小型固定床上考察了催化剂负载量、温度,氢气以及水蒸气分压对碳转化率和气化反应速率的影响。结果表明,K2CO3对煤焦-水蒸气气化反应有明显的催化作用,700℃,当添加10%的K2CO3,碳的转化率为70%,氢气的含量对煤焦-水蒸气的反应有明显的抑制作用,并采用n级速率方程和Langmuir-Hinshelwood速率方程考察了水蒸气分压的影响,分压提高,煤焦-水蒸气气化反应活性提高,采用n级速率方程得到煤-水蒸气气化反应级数为0.87,活化能为169.2k J/mol;采用L-H方程得到活化能为121.9k J/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号