首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用乙炔真空渗碳工艺对未服役的Cr35Ni45Nb乙烯裂解炉管进行了加速渗碳处理,并采用X射线衍射、扫描电镜、定量电子探针等手段对渗碳前后炉管内壁的渗碳行为及相演化机理进行了系统分析.结果表明:炉管高温渗碳过程的主要控制因素由初期的扩散控制逐渐变为扩散-表面反应综合控制;渗碳过程属多元多相反应扩散范畴,炉管内侧横截面随渗碳深度的不同依次出现了表面碳化物层、亚表层贫碳化物区、片层状碳化物层、规则几何碳化物区、扩散区、弱影响区等六个区域,这六个区域共同组成了M7C3、M7C3-M23C6混合区和M23C6的三级垂直层状分布.贫碳化物区的形成原因是表面碳化物层的形成造成亚表层贫Cr;片层状碳化物的形成源于碳在高镍铬合金中的低渗透性以及析出物进一步的阻碍效应.   相似文献   

2.
Solid state SiC/Ni alloy reaction   总被引:8,自引:0,他引:8  
The solid state reaction between silicon carbide and a model superalloy consisting of 70 at. pct Ni, 20 at. pct Cr, and 10 at. pct Al was studied between 700 °C and 1150 °C for times ranging from “0” hours to 330 hours. Reaction couples consisting of SiC/Ni, SiC/Cr, and SiC/NiCr were also studied. The reactions were carried out in air with the materials, in the shape of discs, maintained in contact under a pressure of 7 MPa. A reaction was detected with SiC and the model alloy at all temperatures studied, and the reaction was diffusion controlled with an activation energy of 184 kJ/mole. In the ceramic the reaction was dominated by the diffusion of Ni into the ceramic forming a banded structure consisting of alternating layers of δ-Ni2Si and a two phase mixture of graphite and δ. On the metal side, the reaction was very dependent on the presence of alloying elements, with pure Ni reacting to the greatest extent, followed by the binary NiCr alloy, and finally by NiCrAl. The growth and presence of the phases detected in these reactions is consistent with phase equilibria concepts.  相似文献   

3.
The present study concerns a detailed investigation of microstructural evolution of nickel based hardfaced coating on AISI 304 stainless steel by high velocity oxy-fuel (HVOF) deposition technique. The work has also been extended to study the effect of coating on microhardness, wear resistance and corrosion resistance of the surface. Deposition has been conducted on sand blasted AISI 304 stainless steel by HVOF spraying technique using nickel (Ni)-based alloy [Ni: 68.4 wt pct, chromium (Cr): 17 wt pct, boron (B): 3.9 wt pct, silicon (Si): 4.9 wt pct and iron (Fe): 5.8 wt pct] of particle size 45 to 60 ??m as precursor powder. Under the optimum process parameters, deposition leads to development of nano-borides (of chromium, Cr2B and nickel, Ni3B) dispersion in metastable and partly amorphous gamma nickel (??-Ni) matrix. The microhardness of the coating was significantly enhanced to 935 VHN as compared to 215 VHN of as-received substrate due to dispersion of nano-borides in grain refined and partly amorphous nickel matrix. Wear resistance property under fretting wear condition against WC indenter was improved in as-deposited layer (wear rate of 4.65 × 10?7 mm3/mm) as compared to as-received substrate (wear rate of 20.81 × 10?7 mm3/mm). The corrosion resistance property in a 3.56 wt pct NaCl solution was also improved.  相似文献   

4.
Coatings of 80Ni-20Cr and 50Ni-50Cr on a 9Cr-1Mo steel substrate were produced by high-velocity oxy-fuel (HVOF) spraying to protect the steel against steam oxidation in ultrasupercritical (USC) boilers. The oxidation studies on the coated specimens showed good protection against the scale growth on the steel substrate. Both the 80Ni-20Cr and 50Ni-50Cr coatings formed a thin protective oxide film on the coating surface. The 80Ni-20Cr coating showed Fe diffusion from the substrate to the coating and nickel diffusion from the coating to the substrate during the oxidation process. In the case of 50Ni-50Cr coatings, the diffusion process was reduced, but a continuous layer of chromium carbide was observed at the coating/substrate interface during the oxidation. The adhesive/cohesive strength of these coatings was evaluated on aged specimens at 750 °C by using a simple tensile test. The results of the as-coated 80Ni-20Cr specimens showed an adhesive-strength value of 68 MPa. On extended aging, the strength of the coating increased beyond the detection limit of the resin. The nickel diffusion from the coating to the substrate and the iron diffusion from the substrate to the coating caused the increased adhesive strength. In the case of 50Ni-50Cr, the as-coated specimens showed an average adhesive strength of 76 MPa and showed a decreasing trend on the aged specimens. The formation of chromium carbide at the interface caused inferior values in the adhesive/cohesive strength of the 50Ni-50Cr coatings. The chromium carbide formed on the coating/substrate interface was identified as M23C6-type carbide.  相似文献   

5.
The formation of chromium carbide diffusion layers on iron-carbon alloys was studied in this investigation. The investigation was carried out on graphite, plain carbon steels, gray cast iron, and white cast iron. The carbide layers were obtained by the powder pack method. To distinguish the effect of iron from the chromizing medium on the layer morphology, high purity iron and chromium powders were used as the components of the powder mixture. The samples were chromized in the temperature range of 870 to 1373 K for five to 1500 minutes. Phase composition of the layers was examined by X-ray diffraction method. To assess chromium and iron distribution in the layers, an electron micro-probe was employed. Microstructure of the layers was examined with the aid of light and electron microscopes. Both replica and thin foil methods were used in this work. The original method of thin foil preparation was used to show the M7C3 layer substructure and to define its crystallographic orientation. It was found that formation of the carbide layer began at temperatures below A1 transformation, when the samples were heated to a normal chromizing temperature. It was proved that M3C appearance in the layer depends on both chromizing temperature and amount of carbon in the alloy. The Fe : Cr ratio in the chromized medium was found to affect the microstructure and thickness of the layers strongly. The needle-shaped grains of the M7C3 layer showed particular crystallographic orientation,i.e., [0001] M7C3 crystallographic direction was perpendicular to the diffusion front. The new data on microstructure of the carbide layers were obtained by thin foil method. The growth direction of the carbide layer was defined, which allowed the suggestion of the diffusion model for the carbide layer formation.  相似文献   

6.
The volume and grain-boundary diffusion of59Fe and51Cr have been studied in an austenitic iron alloy containing 17 wt pct Cr and 12 wt pct Ni. The diffusivities in this alloy of these two tracers and63Ni are compared with their diffusivities in pure iron and in other austenitic stainless steels. For volume diffusion at any particular temperature in the present alloy, Cr is the most rapid while Ni is the slowest, and all three tracers diffuse slower than that reported for pure iron or for other austenitic stainless steels. For grain-boundary transport, Fe diffuses most rapidly above 850°C and Ni diffuses most rapidly below that temperature. The activation energies for both volume and grain-bounary diffusion obey the relationshipQ Ni <Q Cr <Q Fe. Formerly Presidential Intern in the Metals and Ceramics Division, Oak Ridge National Laboratory  相似文献   

7.
以钛铁粉、铬铁粉、铁粉、胶体石墨和镍粉等为原料,原位合成了TiC/Cr18Ni8、TiC/Cr19Al3和TiC/Ni40钢结硬质合金,并用扫描电镜、X射线衍射仪和洛氏硬度计、拉力试验机等对不同粘结相所制备的试样进行了组织结构分析和物理力学性能检测.结果表明:钢结硬质合金主要相组成为TiC、Fe-Cr-Ni和Fe-Cr固溶体,TiC晶粒细小,形状较为规则;粘结相对原位反应合成的钢结硬质合金的密度、硬度和所合成的TiC晶粒有较大影响,在相同烧结条件下TiC/Ni40钢结硬质合金的密度和硬度比TiC/Cr18Ni8和TiC/Cr19Al3钢结硬质合金的高,但TiC/Ni40钢结硬质合金中所合成的TiC晶粒比TiC/Cr18Ni8和TiC/Cr19Al3钢结硬质合金中合成的TiC晶粒偏聚现象严重.TiC/Ni40钢结硬质合金的硬度为60~70.5HRC,TiC/Cr18Ni8和TiC/Cr19Al3钢结硬质合金的硬度多在20~50HRC之间.三者的抗弯强度为960~1452MPa.  相似文献   

8.
Binary and ternary alloys of chromium and iron with nickel were studied. The total solute content ranged from 1 to 10 at. pct. The first-order interaction coefficients for chromium are εCr (Cr)= 1.8 ±2.0, and εCr (Fe) = 0.6 ± 5.0 (twice standard deviation). The relative partial molar enthalpy of liquid chromium in nickel at 1550° and at 5 pct chromium is −2200 cal per g-atom. An unusual result was obtained for iron in the form of a minimum in the experimental ln(IFe N Ni/INi N Fe)-curve. Formerly Postdoctoral Fellow, Department of Metallurgical Engineering, Ohio State University, Columbus, Ohio. Formerly N. S. F. Trainee at Ohio State University.  相似文献   

9.
The age hardening of a Ni?Fe?Cr?Nb alloy containing 4.85 wt pct Nb has been studied using transmission electron microscopy. The major hardening phase in this alloy isγ*, DO22-ordered Ni3Nb, which precipitates as a fine dispersion of square plates. It is shown that nucleation ofγ* plates may be dependent upon matrix excess vacancy concentration, but nucleation ofγ* plates is also observed at dislocations and extrinsic stacking faults. Theγ* phase is metastable with respect to the orthorhombic Ni3Nb phase, β, which precipitates by either a cellular or an intragranular reaction, depending upon the aging temperature. It is proposed that the intragranular nucleation of β laths proceeds by the growth of stacking faults from withinγ* plates; theγ* plates subsequently dissolve in favor of the β laths. Room temperature deformation of theγ* dispersion is shown to produce faults within theγ* plates; possible dislocation reactions occurring during this deformation are discussed.  相似文献   

10.
The oxidation of presulfidized chromium, Ni?Cr, and Ni?Al alloys, and complex nickel base alloys was studied at 1000°C in 1.0 atm of oxygen. Sulfur-rich surface layers were produced in the pretreatment by using H2S?H2 mixtures. Presulfidized chromium oxidized at a rate similar to that of sulfur-free chromium. The oxidation rate of presulfidized Ni?Cr alloys was affected by sulfur only when liquid nickel sulfide was present which accelerated the oxidation rate by creating rapid diffusion paths through the Cr2O3 scale. The oxidation behavior of presulfidized Ni?Al alloys, with aluminum contents sufficient for the formation of a protective Al2O3 layer in the sulfur-free condition, was influenced by sulfur only when aluminum sulfide was formed in the presulfidation treatment which caused the Al2O3 scale to be porous. The oxidation behavior of nickel-base alloys containing both chromium and aluminum was insensitive to the presence of sulfides when the concentration of aluminum in the alloy was such that a protective Al2O3 scale was formed during oxidation of the sulfur-free alloy and aluminum sulfide was not formed in the presulfidizing treatment.  相似文献   

11.
The multi-metallic magnetite ore at Pokhpur, Tuensang district of Nagaland is of special significance due to the presence of Ni, Cr and Co. Its smelting was carried out to selectively reduce all the oxides of nickel, chromium, cobalt and iron present in the ore into their metallic form. The reduction of chromium was found to be the controlling factor to determine the amount of reductant required to be added in the charge mix. Initially the basic laboratory scale smelting reduction study was carried out in a graphite crucible fitted in an induction furnace at two different temperatures using two reductant prior to pilot scale smelting trails in 500 kVA submerged arc furnace. The product comprising of chromium, nickel and cobalt was used to make grinding media which has been successfully tested in cement plants.  相似文献   

12.
The microstructure of Alloy 625, which has undergone prolonged (∼70,000 hours) service at temperatures close to but less than 600 °C, has been characterized by transmission electron microscopy. The precipitation of an intermetallic phase Ni2(Cr, Mo) with Pt2Mo-type structure has been observed in addition to that of the γ″ phase. Six variants of Ni2(Cr, Mo) precipitates have been found to occur in the austenite grains. These particles exhibit a snowflake-like morphology and are uniformly distributed in the matrix. They have been found to dissolve when the alloy is subjected to short heat treatments at 700 °C. The occurrence of the Ni2(Cr, Mo) phase has been discussed by taking the alloy chemistry into consideration. Apart from the intermetallic phases, the precipitation of a M6C-type carbide phase within the matrix and the formation of near continuous films, comprising discrete M6C/M23C6 carbide particles, at the austenite grain boundaries have been noticed in the alloy after prolonged service.  相似文献   

13.
The effects of boron and carbon additions on the tendency for intergranular fracture in trinickel silicide intermetallics are reported. Melt spinning of Ni77Si23 alloyed with 0.1 at. pet boron results in full bend ductility and complete transgranular fracture compared with brittle intergranular fracture for the unmodified compound. Alloying with 0.1 at. pet carbon also produces full bend ductility but a mixed mode failure (≈30 pct transgranular). For both carbon and boron additions, reducing the Ni concentration of the base compound results in a greater percentage of intergranular fracture. The boron solubility limit depends on the Ni concentration of the base compound. For Ni77Si23, the solubility limit is between 0.1 and 0.2 at. pet boron. For compounds with silicon concentrations of 23.5 and 24.0 at. pct, the solubility limit is less than 0.1 at. pct boron. Boron additions above the solubility limit result in Ni3B precipitates which degrade the bend ductility and increase the percentage of integranular fracture. Alloying with carbon above the solubility limit (<0.1 at. pct) produces graphite precipitation. For Ni77Si23, increasing the carbon concentration from 0.1 to 1.0 at. pct resulted in no change in the ductility. Auger examination of the grain boundary composition showed strong segregation of both boron and carbon. Enrichment in silicon concentration was also observed.  相似文献   

14.
Sessile drop tests were used to obtain information about copper-chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Auger electron spectroscopy (AES), and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 °C for 1 hour, copper alloys containing greater than 0.98 at. pct chromium form continuous reaction layers of approximately 10-μm thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 deg or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modeled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of the Cu alloy and later by the diffusion of C through chromium carbide. This article is based on a presentation made in the symposium “High Performance Copper-Base Materials” as part of the 1991 TMS Annual Meeting, February 17–21, 1991, New Orleans, LA, under the auspices of the TMS Structural Materials Committee.  相似文献   

15.
The microstructure, chemical and phase composition of chromium silicide diffusion coatings on steels 20, 45, U8, and U10 are studied. It is established that the phases Cr23C6 and Cr7C3 with a silicon content in them of up to 0.25 at.% form at the surface of chromium silicide coatings. The maximum silicon content at 7% in steels 20 and 45 is observed beneath the carbide layer at a depth of 40–50 µm, but for steel U10 it is 1.9% at the carbide layer-matrix boundary. It is shown that the corrosion resistance of chromium silicide diffusion coatings increases markedly compared with uncoated specimens: by a factor of 15–30 depending on the acid used (H2SO4, HCl, H3PO4, HNO3, CH3COOH). There is also an increase in the cavitation resistance of articles with chromium silicide coatings in water and 3% NaCl solution.__________Translated from Poroshkovaya Metallurgiya, Nos. 1–2(441), pp. 23–30, January–February, 2005.  相似文献   

16.
An ordering reaction has been observed in the nickel-rich binary alloys of the Ni?Ta system that are aged below 570°C following quenching from elevated temperatures. This reaction has been investigated by employing electron diffraction microscopy, X-ray diffraction, and electrical resistivity techniques. The ordered phase has been identified as Ni8Ta and its structure is identical to that of the Ni8Nb (Cb) reported earlier. In the stoichiometric Ni8Ta alloy (Ni-11.1 at. pct Ta) three variants of the Ni8Ta phase are nucleated apparently “homogeneously” throughout the matrix. The precipitate or domain morphology has been identified as a cuboid elongated in one direction such that the cube faces are parallel to the {100} planes of the matrix. The cuboid morphology of the precipitates tends to disappear as the precipitates coalesce and the particle size approaches 1000Å.  相似文献   

17.
Plug-type, ZrO2-based oxygen sensors have been used for long-term measurements of oxygen activity in Fe–O–Cr and Ni–O–Cr melts. In these melts, equilibrated with chromium oxide, oxygen activities aO were determined as a function of Cr content. From the experimental results, data were derived for activity coefficients fO and of 1st and 2nd order interaction parameters eOCr and rOCr. Cr2O3 has been identified as the oxide phase in equilibrium with the metal melt at ≥ 5 wt.% Cr in the case of iron and at ≥ 0.2 wt.% Cr in the case of nickel. Oxygen activities and oxygen contents in Cr-containing iron melts are lowered with increasing additions of nickel. Further investigations were directed to aO determination in Fe–O–Cr–C and Fe–O–Cr–Al melts.  相似文献   

18.
The diffusion bonding of a Si3N4-TiN composite with Ni, INVAR (Fe-Ni alloy), and IN600 (Ni-Cr-Fe alloy) interlayers has been investigated between 1100 °C and 1350 °C, under argon or nitrogen atmosphere. For the chosen bonding conditions, the Si3N4 phase of the composite reacts with the interlayer phase, leading to the release of silicon and nitrogen, whereas the TiN phase remains stable. The bonding mechanisms with nickel and INVAR (Ni-Fe alloy) interlayers are rather similar. Released silicon diffuses into the reaction layer and into the interlayer, forming a solid solution, whereas the released nitrogen remains gaseous. The bonding rate depends then on the elimination rate of nitrogen from the reaction interface. The thermal stability of these joints is very high up to 1100 °C. However, the interfacial porosity and the internal stresses created by the high nitrogen pressure are pernicious for the mechanical strength. The bonding mechanism with IN600 (Ni-Fe-Cr alloy) interlayer is rather different. The released nitrogen can form nitrides with interlayer elements (Cr, Al). Released silicon diffuses into the reaction layer and forms silicides. The joint porosity is less significant for the IN600 interlayer, which suggests a good mechanical strength. However, the formation of silicide is pernicious, because of the brittleness of these phases.  相似文献   

19.
Studies of solidification behavior have been conducted on cast Al-Fe-V-Si alloys. The first phase to precipitate during solidification of an Al-8.3Fe-0.8V-0.9Si alloy is Al3Fe(V,Si), which is isostructural with the Al3Fe phase. Thereafter, the solidification proceeds through several invariant reactions. The final invariant reaction is associated with a pronounced arrest. The temperature of this arrest is a function of the cooling rate and modification treatment, with magnesium added as an Al-20 pct Mg or Ni-20 pct Mg master alloy. The coarse iron aluminide precipitates in a slow-cooled (>1 °C/s) cast structure transform to a ten-armed, star-like morphology upon chill casting the melt (cooling rate >10 °C/s) from 900 °C or upon water quenching from above 800 °C. Treatment with magnesium refines the morphology, size, and distribution of iron aluminide precipitates in slow-cooled alloys.  相似文献   

20.
基于竖炉工艺,以不锈钢除尘灰、铁鳞、红土镍矿、铁精矿和铬矿为主要原料,采用小型试验竖炉进行高温冶炼模拟试验,探索竖炉工艺冶炼含Cr和Ni的铁水的可行性。研究结果表明:采用竖炉法处理不锈钢除尘灰,能实现除尘灰中Fe,Cr和Ni等有价元素的回收。Ni元素基本上全部进入铁水,其回收率高达99.80%,Cr的回收率也可达到95.82%。竖炉全红土矿冶炼含Cr和Ni的铁水是可行的,而且将红土镍矿球团和不锈钢除尘灰球团搭配入炉,不仅可充分回收Fe,Cr和Ni等元素,还可减少渣量、降低焦比。竖炉采用铬矿配加铁精矿球团和铁鳞球团冶炼含Cr铁水时,铁水中Cr质量分数可达到17.5%,最高可达20.48%,Cr回收率稍低,为87.15%,但有进一步提高的可能;随着铁水中Si含量的增加,Cr的回收率逐渐提高,磷的分配比逐渐减低;当铁水Si质量分数从1.38%提高到3.73%时,Cr的回收率和磷的分配比变化不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号