首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various factors that affect the nature of wear in SiC and Si3N42 based ceramics have been analyzed. It is shown that adhesion, mechanochemical and diffusion interactions in the contact zone and wear due to fatigue, thermal stresses and abrasion are the predominant factors. Ceramics based on SiC and Si3N4 are shown to have excellent wear resistance. Poreless silicon nitride materials that have good chemical stability, heat and crack resistance appear promising as ceramic—metal friction couples and for metal machining. Silicon carbide based poreless materials are efficient ceramic—ceramic friction couples and for service under severe hydro and gas abrasive media attack.Translated from Poroshkovaya Metallurgiya, No. 5, pp. 3–8, May, 1993.  相似文献   

2.
A technology has been developed for activated sintering of resistive Si3N4 - SiC ceramic composite. The microstructure, electrophysical properties and strength of the materials obtained have beenstudied over a wide range of concentration.  相似文献   

3.
The formation of the structure of a porous ceramic based on Si3N4 has been investigated. It has been found that the structure can be controlled over a wide range of porosities. Materials based on a consisting of a single fraction silicon nitride of grain size 3–5 μm, with the addition of a fine-grained pore agent have most uniform, hard, and developed porous structure. A comparative evaluation of the properties of material based on SiC and Si3N4 showed that silicon nitride materials of the same porosity are stronger and that small micropores can be formed in them. That is of fundamental importance in the development of materials—catalyst carriers for chemical production and various kinds of filtering devices. With the results of the investigations general technological recommendations can be made for producing ceramics with specific structures.  相似文献   

4.
We have studied the kinetics of high-pressure sintering of a composite SiC(C) ― Si3N4 powder of a certain phase composition. We consider structuring and mechanical properties of the ceramics obtained on the basis of this powder.  相似文献   

5.

We have studied the kinetics of high-pressure sintering of a composite SiC(C) ― Si3N4 powder of a certain phase composition. We consider structuring and mechanical properties of the ceramics obtained on the basis of this powder.

  相似文献   

6.
7.
Phase reaction and diffusion path of the SiC/Ti system   总被引:2,自引:0,他引:2  
Bonding of SiC to SiC was conducted using Ti foil at bonding temperatures from 1373 to 1773 K in vacuum. The total diffusion path between SiC and Ti was investigated in detail at 1673 K using Ti foil with a thickness of 50 μm. At a bonding time of 0.3 ks, TiC at the Ti side and a mixture of Ti5Si3C x and TiC at the SiC side were formed, yielding the structure sequence of β-Ti/Ti+TiC/Ti5Si3C x +TiC/SiC. Furthermore, at the bonding time of 0.9 ks, a Ti5Si3C x layer phase appeared between SiC and the mixture of Ti5Si3C x and TiC. Upon the formation of Ti3SiC2 (T phase) after the bonding time of 3.6 ks, the complete diffusion path was observed as follows: β-Ti/Ti+TiC/Ti5Si3C x +TiC/Ti5Si3C x /Ti3SiC2/SiC. The activation energies for growth of TiC, Ti5Si3C x , and Ti3SiC2 were 194, 242, and 358 kJ/mol, respectively.  相似文献   

8.
We have studied the characteristic features of synthesis of composite powders SiC Si3N4 Si2N2O. We have investigated processes involving hot pressing of these powders without activating additives and a protective atmosphere. We consider the mechanical properties of ceramics obtained on the basis of these composite powders.  相似文献   

9.
Interdiffusion and reactions occurring at high temperatures between refractory metals (Nb and Ta) and ceramic materials (SiC and A12O3) have been investigated. Diffusion couples were fabricated by depositing Nb and Ta films of ~l-μm thickness onto polished ceramic substrates. These diffusion couples were vacuum annealed at high temperatures for various times. Interfacial reactions were evaluated using optical metallography, Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Kinetic studies in the 800 °C to 1200 °C temperature range for the Nb/SiC system indicated that Nb2C initially forms, followed by the more stable NbCxSiy phase. In some instances, layered structures containing the phases NbC, Nb2C, and NbCxSiy, were observed. The activation energies of formation for the NbCx and NbCxSiy, phases were determined from these measurements. Results from the Ta/SiC system were found to be similar to those from the Nb/SiC system. In both Nb/Al2O3 and Ta/Al2O3 diffusion couples, annealing for up to 4 hours in the 1100 °C to 1200 °C range did not result in any significant reactions. These results suggest that A12O3 may be a promising diffusion barrier between Nb and Ta metal matrices and SiC ceramic reinforcements. formerly with Lockheed Research and Development Division, is Senior Member of Technical Staff, Sandia National Laboratories, Albuquerque, NM 87185  相似文献   

10.
Conclusions n materials of the system Si3N4-SiC are hot-pressed, there occur processes of carbidization of Si3N4 and of reduction of the surface film of SiO2 accompanied by weight loss and increased concentration of SiC. The degree of such physicochemical transformations is well correlated with the magnitude of the specific weight losses. The electrical conductivity of the investigated materials is basically determined by the content of the conducting phase SiC in the initial charge; however, when the concentration of the introduced silicon carbide is low, then the amount of secondary SiC forming in hot pressing plays a considerable role.Translated from Poroshkovaya Metallurgiya, No. 2(290), pp. 51–54, February, 1987.  相似文献   

11.
The effects of temperature and nitrogen pressure are studied on the SiC Si3N4 transformation of silicon carbide powders of various phase compositions, specific surface areas, and contents of mixtures. It is shown that the degree of transformation increases with nitrogen pressure up to 10 MPa and that, in all temperature and pressure ranges of nitrogen, it is higher for bulk free powder than the preliminarily compacted material. In 30–60 min, a complete transformation of SiC into Si3N4 occurs under 10 MPa nitrogen pressure and at 1650–1750°C temperature.Institute of Inorganic Chemistry, Slovakian Academy of Sciences. Institute of Superhard Materials, Ukrainian Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, No. 4(364), pp. 1–6, April, 1993.  相似文献   

12.
Production of silicon nitride by acid enrichment of products of interaction between ferrosilicon and gaseous nitrogen under conditions of self-propagating high-temperature synthesis (SHS) is studied. The effect of the nature of acid, its concentration, agitation of solution, and process temperature is determined. The reaction of the Si3N4 + Fe composite powder and the hydrochloric acid solution is found to have a stage behavior. The apparent activation energy of iron passing into the solution is determined. The purity of the produced Si3N4 powder is demonstrated to depend on a degree of nitration of SHS products. The chemical and phase composition of the powder and its specific surface are determined.  相似文献   

13.
Hard amorphous silicon carbonitride coatings for wear resistance have been produced by d.c. plasma‐enhanced chemical vapour deposition on pure iron at 573 K. Compared with most plasma assisted processes work was conducted under a relatively high pressure of 130 Pa. The advantages of this technique are an amorphous film structure, high deposition rates (up to 2 μm/min), high hardness and simple equipment. Hexamethyldisilazan (HMDSN) was used as precursor and argon, hydrogen, nitrogen and ammonia as process gases. The dependence of the coatings on the process parameters (process gas and d.c. power) was investigated. The characterization of the samples was carried out mainly by Fourier transform infrared spectrometry (FTIR), electron probe microanalysis (EPMA) and hardness measurement. Samples show clearly the infrared spectra absorption bands characteristic of SiC and Si3N4, with traces of hydrogen bonding. The material structure shows a strong dependence on the process gas and the d.c. power. However, for argon and hydrogen were deposited carbon‐rich SiC films with low nitrogen content. Nitridic films with low carbon content were deposited using nitrogen and especially ammonia. The hardness of the produced coatings was about 10 ‐ 55 GPa.  相似文献   

14.
《Acta Metallurgica Materialia》1992,40(11):3129-3139
Diffusion reactions during solid state joining of a ceramic SiC/SiC composite to two superalloys, Hastelloy X and Incology 909, by hot isostatic pressing (HIP) have been investigated. The HIP pressure was 200 MPa in all joining cycles, and the temperature/dwell time were either 800°C/15 min, 900°C/1 h or 1000°C/ 1 h. The reaction zones formed consisted of a thin layer of carbides surrounded by several layers containing silicides and free carbon. The thickness of the reaction layers increased with increasing temperature, but were more affected by the composition of the alloy. With more carbide formers in the alloy, the thickness of the reaction layer decreased. The SiC composite was found to be considerably more prone to reactions with these superallys during HIP as compared to Si3N4 under similar conditions.  相似文献   

15.
Nanostructured Ti-Cr-B-N and Ti-Cr-Si-C-N coatings with various contents of chromium and nitrogen are obtained by the magnetron sputtering of multiphase composite targets. Their structure and phase composition are investigated by X-ray phase analysis, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and optical emission glow-discharge spectroscopy. The Ti-Cr-B-N and Ti-Cr-Si-C-N coatings are based on the fcc phase with texture (100) and crystallite size <25 nm. The Si3N4-based hexagonal phase was also revealed in the Ti-Cr-Si-C-N coatings. An investigation into the properties of coatings with the use of methods of nanoindentation, scratch testing, and by performing tribological tests showed that they have a hardness of up to 30 GPa, an adhesion strength no lower than 35 N, and their friction coefficient falls in the range of 0.35–0.57. Coatings also possess high thermal stability, resistance to oxidation, and corrosion stability in a 1N H2SO4 solution. The data obtained in tests of hard-alloy cutting tools indicate that the deposition of nanostructured Ti-Cr-B-N and Ti-Cr-Si-C-N coatings increases its resistance by a factor of 11–17.  相似文献   

16.
Joining Si3N4 to Si3N4 was carried out initially with a Cu34Ni27Ti39 brazing alloy prepared by double melting under a vacuum condition. However, the strength of the joints was not as high as expected. The causes were studied. Based on the results of the analysis, a CuNiTiB brazing filler metal was designed. The Si3N4/Si3N4 joints were then brazed with this new brazing alloy in the paste form, and joints with a three-point bend strength of 338.8 MPa at room temperature were obtained. The interfacial reactions of the joint are also discussed. With the rapidly solidified foils of the brazing alloy, the bend strength of the Si3N4/Si3N4 joints under the same brazing conditions is raised to 402 MPa at room temperature. The Si3N4/Si3N4 joints brazed with this newly developed brazing alloy exhibit a rather high and steady bend strength (about 406 MPa) at 723 K.  相似文献   

17.
陶瓷基复合材料(Ceramic matrix composites CMCs)被视为新一代航空发动机热端部件的主要候选材料。然而,陶瓷基复合材料在服役过程中会受到高温水蒸气腐蚀,从而导致材料性能急剧下降。在CMCs表面制备环境障碍涂层(Environmental barrier coating,EBC)可有效解决这一难题。稀土硅酸盐具有高熔点、与CMCs匹配的热膨胀系数和良好的耐蚀性能等特点,是最具应用潜力的环境障碍涂层材料。大气等离子体喷涂技术是制备稀土硅酸盐环境障碍涂层的常见方法。本文通过固相反应法制备了不同物相组成的硅酸镱粉体,并采用大气等离子体喷涂方法制备了富Yb_2O_3(YS0.75)和富Yb_2Si_2O_7(YS1.25)两种涂层,比较研究了涂层的相组成、微观结构和耐高温水蒸气腐蚀性能。研究发现,YS0.75涂层主要由Yb_2O_3和Yb_2SiO_5相组成,结晶度较高,层状结构明显,涂层内有较多裂纹。YS1.25涂层主要由Yb_2SiO_5和Yb2Si2O7相组成,结晶度较低,片层间结合紧密,涂层含有较多球型气孔。不同物相组成的硅酸镱涂层经1400oC高温水蒸气腐蚀后表面均生成Yb_2SiO_5层。富Yb_2O_3涂层具有更好的耐水蒸气耐蚀性能。  相似文献   

18.
The reaction products, formed during annealing of porous powder mixtures of Si3N4 with non-nitride forming metals like Ni or Mo, will depend on the partial pressure of N2 in the atmosphere. In a diffusion couple, however, nitrogen has to be released at the Si3N4-interface during the formation of a metal silicide. It cannot escape easily and builds up a higher pressure of nitrogen at this interface. Therefore, the reaction products are different from those in porous pellets. This has been verified for NiSi3N4 and MoSi3N4 couples. The role of traces of oxygen on these reactions will be discussed.  相似文献   

19.
The tensile properties and microstructures of AA6061/Si3N4 particle composites fabricated by pressureless infiltration under a nitrogen atmosphere were analyzed. In addition, the control AA6061 without Si3N4 particles fabricated by the same method was investigated to separate the effect of Si3N4 particle addition. It was found that AlN particle layers formed on the surface of Al particles in the powder bed, which replaced the Mg3N2 coated layers through the following reaction: Mg3N2 + 2Al → 2AlN + 3Mg. Thus, the spontaneous infiltration results from a great enhancement of wetting via the formation of Mg3N2 by the reaction of Mg vapor and nitrogen gas. The increased tensile strength and 0.2 pct offset yield strength in the control AA6061 were largely due to fine AlN particles formed by the aforementioned in situ reactions, as compared to commercial AA6061. In the composite reinforced with Si3N4 particles, of course, the AlN was also formed through the following additional reaction at the Si3N4 particle/Al melt interfaces: Si3N4 + 4Al → 4AlN + 3Si. However, this AlN may not contribute to the increase in strength because its formation is compensated by the consumption of Si3N4 particles. Consequently, the strength increase of the composite fabricated by the present method is attributed to the fine AlN particles formed in situ, as well as the fine reinforcing Si3N4 particles, as compared to commercial AA6061.  相似文献   

20.
Studies have been made on the changes in structure and properties of sintered materials: Si3N4 - 5 mass% Y2O3 - 2 mass% Al2O3, Si3N4 - 5 mass% Y2O3 - 5 mass% Al2O3, and Si3N4 - 40 mass% TiN on deformation in a high-pressure chamber of toroid type (pressure 4–5 GPa, temperature 1000–1600 °C), and also by direct extrusion with degrees of reduction of 55 and 72% (temperature 1750–1850 °C, pressure on the plunger 20–30 MPa). After pressure-chamber treatment, the materials have elevated mechanical characteristics: HV10 ≈ 16.7 GPa, KIc up to 8.4 MPa · m1/2 for the system Si3N4 - Y2O3 - Al2O3; and HV10 ≈ 16.9 GPa, KIc up to 9.4 MPa · m1/2 for Si3N4 - TiN. A structure feature is the small size of the coherent-scattering regions: 51 nm for Si3N4 and 65 nm for TiN in the system Si3N4 - TiN, and 33 nm for specimens in the system Si3N4 - Y2O3 - Al2O3. High-temperature extrusion results in a structure with β-Si3N4 grains elongated along the deformation direction. The anisotropic structure has KIc values in directions perpendicular to and parallel to the direction of extrusion of 11.5–12.0 MPa · m1/2 and 7.5–7.8 MPa · m1/2, respectively. The hardness after extrusion becomes 16.0 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号