共查询到17条相似文献,搜索用时 62 毫秒
1.
纳米粒子和聚四氟乙烯填充UHMWPE复合材料的摩擦磨损性能研究 总被引:1,自引:0,他引:1
以纳米氧化锌(ZnO)和纳米蒙脱土(MMT)及聚四氟乙烯(PTFE)作为复合填料,通过热压成型工艺制备了纳米ZnO-MMT及PTFE填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响,用扫描电子显微镜观察了复合材料磨损表面形貌。结果表明当PTFE和MMT的填充量均保持为质量分数6%,填充纳米ZnO质量分数为4%~6%时的复合材料可获得较好的摩擦磨损性能,与不含纳米ZnO的复合材料相比,其摩擦因数最低下降了11.1%,而磨损率下降了83.3%。当复合填料中纳米ZnO含量较低时,复合材料的磨损机制主要表现为不同程度的粘着磨损,但当复合填料中纳米ZnO含量较高时,复合材料的磨损机制主要表现不同程度的粘着磨损和磨粒磨损,同时其复合材料的摩擦磨损性能出现了恶化现象。 相似文献
2.
采用模压烧结法制备了超高分子量聚乙烯(UnMWPE)/聚苯酯(Ekonol)复合材料;采用45#钢为摩擦对偶件的往复滑动式摩擦磨损试验机,在室温下测试了Ekonol含量对UHMWPE在干摩擦和油田污水条件下的摩擦磨损性能影响,实验条件为:接触压力7.5 kN、滑动速度1.8 m/min、时间3 h;采用扫描电子显微镜观察复合材料磨损表面形貌并分析了磨损机制.结果表明:填充加%Ekonol可以显著改善UHMWPE的摩擦磨损性能.与干摩擦条件相比,在油田污水条件下,UHMWPE基复合材料摩擦因数提高不明显,但磨损率明显增大;在干摩擦条件下,纯UHMWPE的磨损机制主要为粘着和犁沟效应,UHMWPE/Ekonol复合材料的磨损机制为粘着和疲劳,而在油田污水条件下UHMWPE/Ekonol复合材料的磨损机制主要为磨粒磨损和疲劳. 相似文献
3.
4.
纳米锌填充超高分子量聚乙烯复合材料微动摩擦磨损性能 总被引:1,自引:0,他引:1
利用热压烧结法制备不同含量纳米锌填充超高分子量聚乙烯(UHMWPE)复合材料,采用微动摩擦磨损试验机研究干摩擦条件下纳米锌含量对复合材料微动摩擦磨损性能的影响。利用场发射扫描电子显微对复合材料断面进行分析,采用扫描电子显微镜对材料磨损表面及钢球进行表征,探讨复合材料的磨损机制。研究结果表明:随着纳米Zn含量的增加,复合材料的摩擦因数和磨损率均表现为先降低后升高;当纳米Zn质量分数为1%时复合材料具有最低的摩擦因数和磨损率,且对偶钢球表面形成连续的转移膜;复合材料的磨损机制主要为黏着磨损和磨粒磨损。添加锌纳米颗粒,可以提高UHMWPE复合材料的微动摩擦磨损性能,当纳米锌质量分数为1%时,复合材料具有最低的摩擦因数和最优的耐磨损性能。 相似文献
5.
用机械共混、冷压成型烧结的方法制备了纳米SiO2/石墨/玻璃纤维/PTFE复合材料试样。用MM-200型磨损试验机测试了在干摩擦条件下不同载荷时各试样的摩擦磨损性能;用扫描电镜对磨损后试件表面进行观察和分析。研究结果表明:纳米SiO2和玻璃纤维有效提高了PTFE的承载能力,石墨的加入起到了减小摩擦的作用;在本试验条件下,在摩擦过程中三元混合填充PTFE复合材料在偶件表面形成了转移膜,减少了复合材料与偶件的直接接触,因而表现出优异的抗磨性。 相似文献
6.
碳材料填充 PTFE 复合材料摩擦磨损性能 总被引:1,自引:1,他引:1
利用 MM-200 型磨损试验机考察了石墨、碳纤维、硬碳和软碳填充 PTFE 复合材料的摩擦磨损性能,采用扫描电子显微镜观察分析磨损表面形貌及磨损机制.结果表明,碳材料可以不同程度地提高 PTFE 的耐磨性,它们对PT-FE 耐磨性的提高程度各不相同,其中以硬碳填充 PTFE 复合材料的磨损质量损失最小,石墨填充 PTFE 复合材料的磨损质量损失较大;不同填充材料对 PTFE 摩擦因数的影响各不相同,其中石墨填充 PTFE 的摩擦因数较小.石墨、软碳填允复合材料磨损机制以粘着磨损为主,硬碳、碳纤维复合材料,则表现为粘着磨损和磨粒磨损. 相似文献
7.
采用机械共混-冷压成型-烧结的工艺制备了PEEK、PPS填充PTFE基粘弹.摩擦型阻尼材料,用环-块式磨损试验机研究了在干摩擦条件下的摩擦磨损性能;用扫描电子显微镜观察磨损表面形貌和内部组织结构。结果表明:混合填充PEEK和PPS时,2种填充物的比例对材料的摩擦因数影响不大,当二者含量相近时,摩擦因数最大;填充物对磨损性能的影响与对摩擦因数的相同;随着PEEK含量的增加和PPS含量的减少,材料的磨损方式由疲劳剥落磨损为主转变为犁削、粘着磨损;PTFE含量的增加,使得复合材料的摩擦因数减小,而磨损有所增大。综合考虑认为,PTFE与适当比例的PEEK/PPS混合填充,具有合适的摩擦因数和较好的耐磨性,能够满足特殊工况下阻尼材料的需要。 相似文献
8.
硫酸钙晶须填充PTFE复合材料的摩擦学性能研究 总被引:1,自引:0,他引:1
用硫酸钙晶须(CSW )填充改性聚四氟乙烯(MVE),采用模压成型工艺制备不同硫酸钙晶须含量的PTFE/CSW复合材料;利用摩擦磨损试验机研究硫酸钙晶须对PTFE/CSW复合材料摩擦学性能的影响,利用扫描电子显微镜对PM复合材料的磨损表面进行微观分析.结果表明:填充硫酸钙晶须提高PTFE复合材料的耐磨损性能,但复合材料的摩擦因数略高于纯PTFE;纯PTFE的磨损机制为黏着磨损,而PTFE/CSW复合材料的磨损机制为轻微磨粒磨损和黏着磨损共同作用.当硫酸钙晶须质量分数大于10%时,PTFE/CSW复合材料的磨损机制逐渐转变为严重的磨粒磨损. 相似文献
9.
填料对超高分子量聚乙烯摩擦磨损性能的影响研究 总被引:5,自引:0,他引:5
用MPV-200型摩擦磨损试验机和腐蚀磨损试验机,研究了MoS2,PTEF,石墨,玻璃纤维,碳纤维等填料对超高分子量聚乙烯(UHMW-PE)摩擦磨损性能的影响,结果表明:填充MoS2,PTFE,石墨可降低UHMW-PE的摩擦系数;而添加玻璃纤维则增大了UHMW-PE的摩擦系数,添加碳纤维对UHMW-PE的摩擦系数几乎无影响,同时,添加填料可使UHMW-PE的耐磨性显提高,其中石煌减摩抗磨效果最佳,超高分子量聚乙烯基体的和石墨填料的构成的复合材料,同超高分子量乙烯相比,不仅耐磨性大幅度提高,而且磨擦系数大大降低。 相似文献
10.
以超高分子量聚乙烯为基体,用纳米二硫化钼和氟橡胶对其进行改性,制备一种新型复合UHMWPE水润滑轴承材料。在轴系试验台SSB-100上,研究复合UHMWPE材料在不同转速下的摩擦磨损性能,并分析其磨损形貌。结果表明,采用纳米二硫化钼改性UHMWPE时并不能有效改善其摩擦性能;采用氟橡胶改性时UHMWPE复合材料的摩擦因数呈现整体下降、局部波动的趋势,并在氟橡胶质量分数为20%时摩擦因数最低;二硫化钼和氟橡胶协同改性UHMWPE材料的摩擦因数随着二硫化钼和氟橡胶含量的升高而逐渐下降,其中纳米二硫化钼质量分数为8%、氟橡胶质量分数为16%的材料摩擦性能和磨损性能都达到最优。 相似文献
11.
利用销-盘式摩擦磨损试验机考察了预热处理温度和时间对超高分子量聚乙烯(UHMWPE)材料摩擦磨损性能的影响,借助扫描电子显微镜观察了试样磨损表面形貌。结果表明:通过140℃、10~15 min的预热处理工艺可以显著改善UHMWPE材料的摩擦磨损性能。随着预热处理工艺参数的改变,UHMWPE材料的磨损机制也发生不同程度的变化,开始未进行预热处理时UHMWPE材料的磨损机制主要表现为粘着磨损和疲劳磨损特征,随着预热处理温度的提高和时间的延长,其磨损机制逐渐变为粘着磨损占主导地位,最终又转变为粘着磨损和疲劳磨损相互作用,局部磨损表面呈现了严重的塑性变形特征。 相似文献
12.
通过双螺杆挤出熔融共混的方法制备剑麻纤维(SF)和低密度聚乙烯(LDPE)共同填充的聚甲醛复合材料,在HT-500型高温摩擦磨损试验机上考察其干滑动摩擦条件下的摩擦磨损性能,并通过扫描电子显微镜(SEM)观察其磨损表面形貌,分析磨损机制。结果表明:添加适量的LDPE能显著降低POM的摩擦因数和磨损率,当LDPE质量分数为5%时,复合材料的摩擦因数下降21.7%,磨损率降低10%;随SF质量分数的增加,POM/5%LDPE/SF复合材料的摩擦因数和磨损率呈现先增大后减小再增大的趋势,当SF质量分数为5%时,复合材料摩擦磨损性能优异,在转速为1 120 r/m in,恒定载荷为8 N的实验条件下,其稳定摩擦因数为0.16,磨损率为1.61×10-6mm3/(N.m)。纯POM磨损方式以黏着磨损为主,POM/5%LDPE/SF复合材料以疲劳磨损为主,伴随有转移膜的剥落。 相似文献
13.
14.
聚丙烯、炭黑和碳纤维共混填充超高分子量聚乙烯复合材料的力学和摩擦磨损性能 总被引:1,自引:0,他引:1
采用模压成型的方式制备超高分子量聚乙烯(UHMWPE)复合材料,通过AG-1型电子万能实验机和MM-200型摩擦磨损试验机分别研究填料对复合材料力学性能和摩擦磨损性能的影响,采用光学显微镜分析复合材料磨损表面的形貌。结果表明:聚丙烯(PP)和无机填料炭黑(CB)或CB与碳纤维(CF)混杂填料的加入使UHMWPE复合材料的拉伸强度降低,弯曲模量和硬度增加,其中UHMWPE/PP/CB/CF复合材料的弯曲模量和硬度增幅大于UHM-WPE/PP/CB复合材料。填料的加入可改善UHMWPE复合材料的摩擦磨损性能,当填料的质量分数为5%时,UHMWPE复合材料的摩擦磨损性能最好,且UHMWPE/PP/CB/CF复合材料的耐磨性能优于UHMWPE/PP/CB复合材料。与UHM-WPE相比,UHMWPE/PP/CB/CF复合材料的摩擦因数和磨痕宽度分别下降了10%和44%,UHMWPE/PP/CB复合材料则分别下降了12%和42%。光学显微镜观察表明填料的加入大大改善了UHMWPE的磨粒磨损,复合材料表面以较浅的犁沟磨损为主要特征。 相似文献
15.
通过模压法制备了低密度聚乙烯(LDPE)和麦秸粉共同填充的聚甲醛(POM)复合材料,在往复式滑动摩擦磨损试验机上测试了其干滑动摩擦条件下的摩擦磨损性能,试验机往复频率为1.0Hz。结果表明:含质量分数5%LDPE和5%麦秸粉的POM复合材料在具有最低的稳定摩擦因数和较低的比磨损率,其稳定摩擦因数为0.139,比磨损率为1.14×10-6mm3/(N.m)。SEM观测表明POM/LDPE/麦秸粉复合材料的磨损机制主要疲劳磨损和转移膜的脱落。 相似文献
16.
17.
填充纳米SiO2对超高分子量聚乙烯复合材料摩擦磨损性能的影响 总被引:3,自引:1,他引:3
用热压成型法制备了纳米SiO2填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响,采用扫描电子显微镜观察了复合材料磨损表面形貌,并借助X射线能谱仪对试样磨损表面进行了微区分析。结果表明:纯UHMWPE磨损表面局部存在着大量的粘着变形和疲劳裂纹的特征,填充15%(质量分数)的纳米SiO2能较好地改善UHMWPE/nano-SiO2复合材料的摩擦磨损性能,其磨损表面只存在粘着撕裂现象,看不到疲劳裂纹特征。当填充纳米SiO2质量分数达到20%时,其磨损表面存在贫Si区和富Si区,同时磨损表面呈现出热裂纹迹象,复合材料的耐磨性能改善程度明显下降,并且摩擦因数出现了增大趋势。 相似文献