首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
In the present study, a model to predict the fatigue crack growth (FCG) behaviour at low temperatures is proposed for a low alloy steel (16 Mn). The experimental results indicate that fatigue ductile-brittle transition (FDBT) occurs in 16 Mn steel and the FDBT temperature (TFDBT) is about 130 K. When T > TFDBT, the FCG mechanism in the intermediate region is the formation of ductile striation and the FCG rates decrease with decreasing temperature. When TTFDBT, the FCG mechanism changes into microcleavage and the fatigue fracture toughness Kfc of the steel decreases sharply. The FCG rates tend to increase as the temperature is further reduced. The test data of the FCG rates are well fitted by the formula developed by Zheng and Hirt. An approximate method to predict ΔKth of the steel at low temperatures is proposed and then a general expression of the FCG rates is given at temperatures ranging from room temperature to TFDBT. By means of the expressions proposed in this paper, the FCG rates at low temperatures can be predicted from the tensile properties if the endurance limit σ−1 and δkth, at room temperature are known. Finally, a model for FDBT is tentatively proposed. Using this model, one can predict TFDBT from the ductile-brittle transition curve determined from impact or slow bending tests of cracked Charpy specimens.  相似文献   

3.
4.
5.
6.
Fatigue crack growth tests on 6082-T6 aluminium specimens have been carried out. The single edge notched tension specimens had a spark eroded 0.2 mm deep starter notch. In order to measure the crack growth, a special direct current potential drop method was used. The experiments were carried out at four different stress ratios. The crack growth data validate the long crack growth data given in Eurocode 9 [CEN. ENV 1999-2: Eurocode 9: Design of aluminium structures. Part 2: Structures susceptible to fatigue. European Committee for Standardisation, 1998.] and some indication of accelerated crack growth for short cracks was found. An effective stress intensity factor, which is a generalisation of an approach proposed by El Haddad et al. [El Haddad MH, Topper TH, Smith KN. Prediction of nonpropagating cracks. Eng Fract Mech 1979; 11:573–84], has been applied to correct for short crack growth behaviour. It has been shown that the potential drop technique can be successfully used to measure crack growth in aluminium specimens. The mean stress dependence was found to be less pronounced than for the 7075-T6 and 2024-T3 aluminium alloys.  相似文献   

7.
The present investigation has been conducted in order to develop a rational approach able to describe the changes in flow stress of AA7075-T6 aluminum alloy with deformation temperature and strain rate, when this material is deformed at temperatures in the range of 123-298 K at strain rates in the range of 4 × 10−4 to 5 × 10−2 s−1. The constitutive formulation that has been advanced to accomplish these objectives represents a simplified form of the mechanical threshold stress (flow stress at 0 K) model developed at Los Alamos National Laboratory (Los Alamos, New Mexico, USA). Thus, it is assumed that the current flow stress of the material arises from both athermal and thermal barriers to dislocation motion. In the present case, the effect of three thermal barriers has been considered: solid solution, precipitation hardening and work-hardening. The first two effects do not evolve during plastic deformation, whereas the last one is considered as an evolutionary component of the flow stress. Such an evolution is described by means of the hardening law earlier advanced by Estrin and Mecking (1984) [20]. The law is implemented in differential form and is integrated numerically in order to update the changes in strain rate that occur during tensile tests carried out both at constant and variable crosshead speed. The extrapolation of the hardening components from 0 K to finite temperatures is accomplished by means of the model earlier advanced by Kocks (1976) [19]. The results illustrate that the constitutive formulation developed in this way is able to describe quite accurately both the flow stress and work-hardening rate of the material, as well as temperature and strain rate history effects that are present when deformation conditions change in the course of plastic deformation. The evaluation of the ductility of the alloy indicates that the changes in this property are mainly determined by deformation temperature rather by strain rate. When deformation temperature decreases from 298 to 123 K, ductility also decreases from ∼35 to 24%. However, despite these relatively small variations, significant changes in the fracture morphology could be observed on the fracture surfaces of the examined specimens, with the predominance of a mixed ductile-brittle mechanism at lower temperatures.  相似文献   

8.
A study of fatigue crack growth of 7075-T651 aluminum alloy   总被引:2,自引:0,他引:2  
Both standard and non-standard compact specimens were employed to experimentally study the crack growth behavior of 7075-T651 aluminum alloy in ambient air. The effects of the stress ratio (R), overloading, underloading, and high–low sequence loading on fatigue crack growth rate were investigated. Significant R-ratio effect was identified. At the same R-ratio, the influence of specimen geometry on the relationship between crack growth rate and stress intensity factor range was insignificant. A single overload retarded the crack growth rate significantly. A slight acceleration of crack growth rate was identified after a single underload. The crack growth rate resumed after the crack propagated out of the influencing plastic zone created by the overload or underload. A parameter combining the stress intensity factor range and the maximum stress intensity factor can correlate the crack growth at different stress ratios well when the R-ratio ranged from −2 to 0.5. The parameter multiplied by a correction factor can be used to predict the crack growth with the influence of the R-ratio, overloading, underloading, and high–low sequence loading. Wheeler’s model cannot describe the variation of fatigue crack growth with the crack length being in the overload influencing zone. A modified Wheeler’s model based on the evolution of the remaining affected plastic zone was found to predict well the influence of the overload and sequence loading on the crack growth.  相似文献   

9.
Fatigue crack growth (FCG) and creep-fatigue crack growth (CFCG) in austenitic stainless-steel Fe-25Ni-20Cr (Alloy 709) were measured experimentally and simulated using the finite element method. Temperature conditions investigated were 550°C, 600°C and 700°C, with load hold times of 0 s, 60 s and 600 s. Fracture surface was investigated using scanning electron microscopy and optical imaging. Experiments indicated that crack growth exhibits minimal sensitivity to the various loading conditions evaluated. At 600°C, crack growth rates were independent of hold time or loading frequency. At 700°C, there was a small increase in crack growth rate as a function of hold time, with a 600s hold time causing a factor of 2 increase in crack growth rate over FCG. Finite element simulations were performed to compute plasticity-induced crack closure in the presence of creep deformations at the crack tip. The simulations produced FCG and CFCG rates similar to the experimental results.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
In this study, 7475-T7351 aluminum strips were subjected to two tensile pre-strain levels of 3% and 5%. Using compact tension C(T) specimens, fatigue crack growth tests were conducted under constant amplitude loading at stress ratios of 0.1 and 0.5 in air and at room temperature. Three fatigue crack growth rate (FCGR) models, namely, Collipriest, Priddle, and NASGRO were examined. To handle the effect of stress ratio on FCGR, Walker equivalent stress intensity factor model was used. Consequently, generalized Collipriest (GC), generalized Priddle (GP), and generalized NASGRO (GN) models were developed and fitted to the FCGR data. It was shown that both GC and GP models fit the FCGR data in a similar fashion. However, the GP model provided a better fit than the GC model. The GN model was found to be the most appropriate model for the data. Therefore, this model may be suggested for use in critical applications, such as aeronautical structural design.  相似文献   

19.
The plastic zone formed at the fatigue crack tip and the fracture topography in MA12 magnesium alloy samples, tested at 293 and 140 K in air and in vacuum, were analysed. It was found that the plastic zone formed in vacuum is characterized by a greater size (h) and degree of plastic strain that in air, and the crack growth rate (dl/dN) is lower. Temperature reduction leads to a decrease in h, while dl/dN and the fracture mechanism are affected by temperature ambiguously, depending on the alloy microstructure and the Kmax value. It was established that the size of the plastic zone can be described by the equation:
h=A(Kmaxσ0.2ps)2
where A is a coefficient dependent on the alloy structural state, environment and test temperature. Evaluation of the cyclic plastic zone size at Kmax, corresponding to the transition from a low temperature region to a ‘Paris’ region, showed that this transition occurred when the cyclic plastic zon reached the structural parameter of the material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号