首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We studied alumothermic reduction of silica from silicate slag to obtain silicon-containing Alloy-I and Alloy-II. Phosphorous industry waste and synthetic slag are used as a silicate slag that consists of more than 90% silicon and calcium oxides and less than l0% other elemental oxides. Silicon-containing Alloy-I was upgraded by acid leaching to silicon of a fine powder structure. Using this powder, we grew poly- and mono-crystalline p-type silicon, with resistivity of 0.24 Ω cm, by the Czochralski method. Silicon-containing Alloy-II was used for obtaining monosilane by aqueous treatment with hydrochloric acid under atmospheric conditions and without any catalyst. There was no trace of diborane, which is a common source for boron contamination in crude silane.  相似文献   

2.
TixCr1 ? yFeyMn1.0 (x = 1.02, 1.05, 1.1, 0.05 ≤ y ≤ 0.25) alloys were prepared by plasma arc melting and annealing at 1273 K for 2 hours. The XRD results show that the main phase of all alloys is the C14 type Laves phase, and a little secondary phase exists in a mixture of the binary alloy phase. The lattice parameters increase with Ti super‐stoichiometry ratio increasing, whereas smaller lattice parameters emerge with increasing Fe stoichiometry content. Additionally, as the Ti super‐stoichiometry ratio decreases, the pressure‐composition‐temperature measurements indicated that hydrogen absorption and desorption plateau pressures of TixCr0.9Fe0.1Mn1.0 (x = 1.1, 1.05, 1.02) alloys increase from 3.15, 0.67, to 5.94, 1.13 MPa at 233 K, respectively. On the other hand, with the Fe content increasing in Ti1.05Cr1 ? yFeyMn1.0 (0.1 ≤ y ≤ 0.25) alloys from 0.1 to 0.25, the hydrogen desorption plateau pressures increased from 1.41 to 2.46 MPa at 243 K. The hydrogen desorption plateau slopes reduce to 0.2 with Ti super‐stoichiometry ratio decreasing to 1.02, but the alloys are very difficult to activate for hydrogen absorption and cannot activate when the Fe substituting for Cr exceeds 0.2. The maximum hydrogen storage capacities were more than 1.85 wt% at 201 K. The reversible hydrogen storage capacities can remain more than 1.55 wt% at 271 K. The enthalpy and entropy for all hydride dehydrogenation are in the range of 21.0 to 25.5 kJ/mol H2 and 116 to 122 J mol?1 K?1, respectively. Our results suggest that Ti1.05Cr0.75Fe0.25Mn1.0 alloy with low enthalpy holds great promise for a high hydrogen pressure hybrid tank in a hydrogen refueling station (45 MPa at 333 K), and the other alloys of low cost may be used for a potable hybrid tank due to high dissociation pressure at 243 K and high volumetric density exceeding 40 kg/m3.  相似文献   

3.
In the study presented here, an apparatus that correctly measured pressure–composition isotherms (PCi) at high pressures (up to 100 MPa) and temperatures (up to 200 °C) was developed. The PCi characteristics of a vanadium–titanium–chromium alloy at high pressure and temperature were examined with the apparatus to develop a metal hydride (MH) compressor. It was revealed that it is possible to use a 40 V20Ti40Cr (at%) alloy with a heat source below 200 °C for hydrogen compression in the approximate range of 2.1–30.0 MPa. The compressed content reached approximately 1.8 wt%, which is almost the same as the reversible hydrogen capacity at 20 °C.  相似文献   

4.
In this paper, we describe the self-ignition combustion synthesis (SICS) of LaNi5 utilizing the hydrogenation heat of metallic calcium at different hydrogen pressures, and focus on the effect of hydrogen pressure on the ignition temperature and the initial activation of hydrogenation. In the experiments, La2O3, Ni, and Ca were dry-mixed, and then heated at 0.1, 0.5, and 1.0 MPa of hydrogen pressure until ignition due to the hydrogenation of calcium. The products were recovered after natural cooling for 2 h. The results showed that the ignition temperature lowered with hydrogen pressure. The products changed from bulk to powder with hydrogen pressure. This was probably caused by volume expansion due to hydrogenation at higher pressure. The product obtained at 1.0 MPa showed the highest hydrogen storage capacity under an initial hydrogen pressure of 0.95 MPa. The results of this research can be applied as an innovative production route for LaNi5 without the conventional melting of La and Ni.  相似文献   

5.
Boron-doped hydrogenated microcrystalline silicon (μc-Si:H) films were prepared using hot-wire chemical vapor deposition (HWCVD) technique. Structural, electrical and optical properties of these thin films were systematically studied as a function of B2H6 gas (diborane) phase ratio (Variation in B2H6 gas phase ratio, dopant gas being diluted in hydrogen, affected the film properties through variation in doping level and hydrogen dilution). Characterization of these films from low angle X-ray diffraction and Raman spectroscopy revealed that the high conductive film consists of mixed phase of microcrystalline silicon embedded in an amorphous network. Even a small increase in hydrogen dilution showed marked effect on film microstructure. At the optimized deposition conditions, films with high dark conductivity (0.08 (Ω cm)−1) with low charge carrier activation energy (0.025 eV) and low optical absorption coefficient with high optical band gap (2.0 eV) were obtained. At these deposition conditions, however, the growth rate was small (6 Å/s) and hydrogen content was large (9 at%).  相似文献   

6.
The present work performs the isentropic analysis and numerical simulation of high-pressure hydrogen jets to study the hydrogen leakage. The exit parameters and the flow characteristics are studied with the ideal gas assumption and real gas effects. The jet exit parameters calculated by the real gas thermodynamic model are different from the results obtained by the ideal gas assumption at high initial pressure based on the isentropic analysis. The ideal gas and the real gas equation of state results in the differences of Mach disk parameters at high initial pressures. The ideal gas assumption underestimates the Mach disk distance by 8% and overestimates the Mach disk diameter by 15% at the initial pressure of 50 MPa. The exit mass flow rates computed from the isentropic expansion assumption agree well with the numerical simulations. The results show that it is reasonable to evaluate mass flow rates of high-pressure hydrogen jets by the isentropic expansion assumption.  相似文献   

7.
Aluminium hydride (AlH3) is a promising hydrogen storage material due to its competitive hydrogen storage density and moderate decomposition temperature. However, there is no convenient way to prepare/regenerate AlH3 from (spent) Al by direct hydrogenation. Herein, we report on a novel approach to generate AlH3 from the decomposition of triethylaluminium (Et3Al) under mild hydrogen pressures (10 MPa) with the use of surfactants. With tetraoctylammonium bromide (TOAB), the synthesis led to the formation of nanosized AlH3 with the known α phase, and these nanoparticles released hydrogen from 40 °C instead of the 125 °C observed with bulk α-AlH3. However, when tetrabutylammonium bromide (TBAB) was used instead of TOAB, larger nanoparticles believed to be related to the formation of β-AlH3 were obtained, and these decomposed through a single exothermic process. Despite the possibility to form α-AlH3 under low conditions of temperature (180 °C) and pressure (10 MPa), TOAB stabilised AlH3 was found to be irreversible when subjected to hydrogen cycling at 150 °C and 7 MPa hydrogen pressure.  相似文献   

8.
大容量高压车载储氢气瓶充氢过程的热力学响应特性是氢燃料电池汽车氢气安全充注亟需解决的关键问题。采用CFD模型,对70 MPa Ⅲ型车载储氢气瓶在不同长径比、充氢速率、气瓶初始压力、气源温度条件下充氢过程的热力学响应特性进行模拟。结果表明,在高压下氢气不可视为理想气体;重力对充氢过程的影响不能忽略;容积100 L储氢气瓶的最佳长径比为3.55;气源温度对充氢过程的影响最为显著,其次是气瓶初始压力与充氢速率,与热力学分析获得的结论类似。  相似文献   

9.
An original compressor for generating hydrogen high pressures (up to 4 kbar) in a 30 cm3 volume at room temperature is described. The construction has no moving mechanical components and consists of two different parts. The first one is a metal-hydride thermo-sorptive compression module based on the hydride-forming material MmNi5. Inlet pressure of the module is 1.5 MPa; discharge pressure is about 40 MPa. The second, cryogenic, part of the compressor consists of two cryo-stages that are designed as high-pressure containers of volume 60 and 30 cm3 respectively. The cryogenic stages may be cooled to a temperature of 78 K and warmed to room temperature. At the lower temperature level in the cryo-stages, a hydrogen pressure of 40 MPa is generated by the hydride part of the compressor. Then, under consecutive heating-off of these two cryo-stages, the latter generates a pressure up to 400 MPa. A cycle period for generation of the maximal pressure is about 90 min. A combined construction of the compressor makes it possible to speed up significantly the process of hydrogen compression, to afford its high purity and at the same time to receive high pressure level in closed systems providing recovery of the working medium (hydrogen, deuterium, tritium) without any losses of the latter.  相似文献   

10.
Boron doped p-type hydrogenated microcrystalline silicon (μc-Si:H) films have been prepared by radio-frequency glow discharge method. Highly conductive p-type μc-Si:H films can be obtained even with lower concentration of hydrogen in the rf glow discharge plasma if chamber pressure is low. Effects of increase in hydrogen (H2) flow rate and chamber pressure have been studied. The structural properties of the films have been studied by X-ray diffractometry. The electrical and optical characterization have been done by dark conductivity, Hall measurements and optical absorption measurements respectively. Film with conductivity 0.1(Ω-cm)−1 with band gap 2.1 eV has been obtained.  相似文献   

11.
The Si–SiC nanocomposites were synthesized by high-energy mechanical milling (HEMM) using two different starting mixtures, Si:SiC=1:2 and Si:C=3:2. Both mixtures result in amorphous silicon and nanocrystalline silicon carbide as confirmed by XRD results. The Si–SiC nanocomposite corresponding to Si:SiC=1:2 obtained after milling for 30 h shows a capacity as high as 370 mAh/g. The nanocomposite synthesized using HEMM for 24 h from a mixture corresponding to Si:C=3:2 also exhibits a stable capacity of 370 mAh/g. Transmission electron microscopy (TEM) analysis shows that SiC nanocrystallites 10 nm in size are distributed homogeneously within the nanocomposite. Electron energy-loss spectroscopy (EELS) maps of C suggests that SiC is uniformly present within the particles.  相似文献   

12.
Currently, the hydrogen storage method used aboard fuel cell electric vehicles utilizes pressures up to 70 MPa. Attaining such high pressures requires mechanical gas compression or hydrogen liquefaction followed by heating to form a high-pressure gas, and these processes add to the cost and reduce the energy efficiency of a hydrogen fueling system. In previous work we have evaluated the use of high-pressure electrolysis, in which hydrogen is generated from water and the electrolyzer boosts the hydrogen pressure to values from 13 to 45 MPa. While electrolytic compression is a novel and energy efficient method to produce high-pressure hydrogen, it has several limitations at present and will require more development work. Another concept is to use hydrogen absorbing alloys that form metal hydrides, in combination with a heat engine (hot and cold reservoirs), to drive a cyclic process in which hydrogen gas is absorbed and desorbed to compress hydrogen. Furthermore, by using a thermally-driven compressor, the hot and cold reservoirs can be obtained using renewable energy such as sunlight for heating together with ambient air or water for cooling. In this work we evaluated the thermodynamics and kinetics of a prototype metal hydride hydrogen compressor (MHHC) built for us by a research group in China. The compressor utilized a hydrogen input pressure of approximately 14 MPa, and, operating between an initial temperature of approximately 300 K and a final temperature of 400 K, a pressure of approximately 41 MPa was attained. In a series of experiments with those conditions the average compression ratio for a single-stage compression was approximately three. In the initial compression cycles, up to 300 g of hydrogen was compressed for each 100 K temperature cycle. The enthalpy of the metallic-alloy-hydriding reaction was found to be approximately 20.5 kJ per mole of H2, determined by measuring the pressure composition isotherm at three temperatures and using a Van't Hoff plot. The thermodynamic efficiency of the compressor, as measured by the value of the compression work performed divided by the heat energy added and removed in one complete cycle, was determined via first and second law analyses. The Carnot efficiency was approximately 25%, the first law efficiency was approximately 3–5%, and the second law efficiency was approximately 12–20%, depending on the idealized compression cycle used to assign a value to the compression work, as well as other assumptions. These efficiencies compare favorably with values reported for other thermally-driven compressors.  相似文献   

13.
A novel highly stable surface coating SiH(1/p) which comprised high-binding-energy hydride ions was synthesized by a microwave plasma reaction of a mixture of silane, hydrogen, and helium wherein it is proposed that He+ served as a catalyst with atomic hydrogen to form the highly stable hydride ions. Novel silicon hydride was identified by time of flight secondary ion mass spectroscopy (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The ToF-SIMS identified the coatings as hydride by the large SiH+ peak in the positive spectrum and the dominant H in the negative spectrum. XPS identified the H content of the SiH coatings as hydride ions, H(1/4), H(1/9), and H(1/11) corresponding to peaks at 11, 43, and 55 eV, respectively. The silicon hydride surface was remarkably stable to air as shown by XPS. The highly stable amorphous silicon hydride coating may advance the production of integrated circuits and microdevices by resisting the oxygen passivation of the surface and possibly altering the dielectric constant and band gap to increase device performance.

The plasma which formed SiH(1/p) showed a number of extraordinary features. Novel emission lines with energies of q·13.6 eV where q=1,2,3,4,6,7,8,9, or 11 were previously observed by extreme ultraviolet spectroscopy recorded on microwave discharges of helium with 2% hydrogen (Int. J. Hydrogen Energy 27 (3) 301–322). These lines matched H(1/p), fractional Rydberg states of atomic hydrogen where p is an integer, formed by a resonant nonradiative energy transfer to He+ acting as a catalyst. The average hydrogen atom temperature of the helium–hydrogen plasma was measured to be 180–210 eV versus ≈3 eV for pure hydrogen. Using water bath calorimetry, excess power was observed from the helium–hydrogen plasma compared to control krypton plasma. For example, for an input of 8.1 W, the total plasma power of the helium–hydrogen plasma measured by water bath calorimetry was 30.0 W corresponding to 21.9 W of excess power in 3 cm3. The excess power density and energy balance were high, 7.3 W/cm3 and −2.9×104 kJ/molH2, respectively. This catalytic plasma reaction may represent a new hydrogen energy source and a new field of hydrogen chemistry.  相似文献   


14.
Experimental studies of the solubility of hydrogen in ice Ih (usual low-pressure ice) at temperature −1 to −2 °C and pressures up to 8 MPa were carried out. At a pressure equal to 1.90 and 8.04 MPa, hydrogen solubility in the ice was found to be 0.15 and 1.32 cm3/g, respectively (hydrogen volume was reduced to the normal conditions).  相似文献   

15.
Porous chromium(III) oxoterephthalate MIL‐101 possesses an MTN zeolite‐type framework with tetrahedral micropores (diameter ~0.8 nm) and two types of mesopores (diameter ~3.0 and 2.8 nm, respectively). The hybrid MIL‐101/Pt/C composite materials were produced by a bridge building technique by grinding of ternary mixtures of MIL‐101, glucose, and Pt‐catalyst, followed by a bridge formation via a carbonization of glucose at 160 °C. The hydrogen adsorption properties of porous materials were investigated at pressures up to 1000 bar. Excess adsorption isotherms measured volumetrically at temperatures of 81 and 298 K evidence a remarkable effect of the catalyst on the material behaviors under high hydrogen pressure. There is no saturation at room temperature within the studied pressure range as the excess hydrogen sorption capacity increases gradually with pressure and reaches 1.5 wt.% instead of maximum 0.4 wt.% for the pristine MIL‐101. The maximum total H2 uptake at 298 K is estimated to be 6.1 wt.% that leads to a shift of the upper limit of the efficiency of the storage system from 25 to 250 bar as compared with the unmodified metal–organic framework. The results obtained demonstrate feasibility of advanced high‐pressure hydrogen storage systems based on hybrid technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Flame propagation of premixed natural gas–hydrogen–air mixtures was studied in a constant volume combustion bomb. Laminar burning velocities and mass burning fluxes were obtained under various hydrogen fractions and equivalence ratios with various initial pressures, while flame stability and their influencing factors (Markstein length, density ratio and flame thickness) were obtained by analyzing the flame images at various hydrogen fractions, initial pressures and equivalence ratios. The results show that hydrogen fraction, initial pressure as well as equivalence ratio have combined influence on both unstretched laminar burning velocity and flame instability. Meanwhile, according to flame propagation pictures taken by the high speed camera, flame stability decreases with the increase of initial pressures; for given equivalence ratio and hydrogen fraction, flame thickness is more sensitive to the variation of the initial pressure than to that of the density ratio.  相似文献   

17.
Tandem solar cells with a microcrystalline silicon bottom cell (1 eV gap) and an amorphous-silicon top cell (1.7 eV gap) have recently been introduced by the authors; they were designated as “micromorph” tandem cells. As of now, stabilised efficiencies of 11.2% have been achieved for micromorph tandem cells, whereas a 10.7% cell is confirmed by ISE Freiburg. Micromorph cells show a rather low relative temperature coefficient of 0.27%/K. Applying the grain-boundary trapping model so far developed for CVD polysilicon to hydrogenated microcrystalline silicon deposited by VHF plasma, an upper limit for the average defect density of around 2 × 1016/cm3 could be deduced; this fact suggests a rather effective hydrogen passivation of the grain-boundaries. First TEM investigations on μc-Si : H p-i-n cells support earlier findings of a pronounced columnar grain structure. Using Ar dilution, deposition rates of up to 9 Å/s for microcrystalline silicon could be achieved.  相似文献   

18.
The Hybrid Sulfur Process, as well as similar sulfur cycles for the production of nuclear hydrogen, requires the decomposition of sulfuric acid into sulfur dioxide, oxygen, and water at temperatures above 800 °C and at pressures up to 9 MPa. The design of a reactor for this process presents numerous challenges in terms of maintaining small pressure differentials and utilizing currently available materials of construction. This paper focuses on design calculations for a composite reactor that preheats, concentrates, and decomposes sulfuric acid for use in the production of hydrogen. The decomposition reaction takes place within individual tubes of a multitube reactor.  相似文献   

19.
Hydrogen can be used in conjunction with aviation kerosene in aircraft engines. To this end, this study uses n-decane/hydrogen mixtures to investigate the explosion characteristics of aviation kerosene/hydrogen in a constant volume combustion chamber with different hydrogen addition ratios (0, 0.2, 0.4), wide effective equivalence ratios (0.7–1.7), an initial temperature of 470 K, and initial pressures of 1 and 2 bar. The results show that the explosion pressure and explosion time decrease linearly with increasing hydrogen addition ratio. The effect of initial pressure is also discussed. A comparison of the adiabatic explosion pressures indicates that the hydrogen addition effect varies at different initial pressures and effective equivalence ratios owing to heat loss. In addition, the maximum pressure rise rate and deflagration index increase with increasing hydrogen concentration, which is more obvious for rich mixtures and high hydrogen concentrations.  相似文献   

20.
Hydrogenated amorphous silicon (a-Si:H) thin films were fabricated by Radio Frequency (RF) magnetron sputtering. For solar-cell applications, a-Si:H layers are required to show low dark conductivity and high photoconductivity and, thus, high photosensitivity. Hydrogen flow ratio and working pressure were mainly adjusted to control bonding configurations and hydrogen concentration in the films. At a high working pressure of 12 mTorr, all of the prepared amorphous and microcrystalline silicon films showed a dominant IR absorption peak at 2100 cm−1, which indicates a Si-H2 stretching mode, grain boundaries and microvoids. When the working pressure was decreased to as low as 3 mTorr with a hydrogen flow ratio of 0.1, the bonding configuration of the films was mainly Si-H as determined by the dominant IR absorption peak at 2000 cm−1, and the photosensitivity of the films was maximized to 760.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号