首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different composite materials made of mixed protonic/electronic conductors, SrCe0.9Yb0.1O3–δ (10YbSC) or BaCe0.9Yb0.1O3–δ (10YbBC), and a mixed oxygen‐ion/electronic conductor, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), were investigated for cathode application in intermediate temperature solid oxide fuel cells (IT‐SOFCs) using a high temperature proton conducting BaCe0.8Y0.2O3–δ electrolyte. Only the LSCF/10YbBC composite was found to be chemically stable. Area specific resistance (ASR) measurements were performed in wet air for LSCF/10YbBC cathodes, changing the weight ratio between the phases and the sintering procedure. The best performance was obtained for the composite cathode containing 50 wt.‐% of LSCF and 50 wt.‐% of 10YbBC, sintered at 1,100 °C. Electrochemical impedance spectroscopy (EIS) measurements of the tested cathodes showed two depressed semicircles in the middle and low frequency range, respectively. Performing ASR measurements at different p allowed us to attribute the two semicircles to charge transfer and oxygen diffusion processes, respectively. The microstructure of the LSCF/10YbBC(1:1) composite cathode was optimised changing the ratio of the particle sizes between the two phases. The lowest ASR values (0.14 Ω cm2 at 700 °C) were observed for the LSCF/10YbBC(1:1) composite cathode with different particle size (sub‐micrometer particles for LSCF and nanometer particles for 10YbBC). Fuel cell polarisation curves demonstrated superior performance of the LSCF/10YbBC (1:1) cathode with respect to Pt.  相似文献   

2.
Z. Tao  G. Hou  N. Xu  X. Chen  Q. Zhang 《Fuel Cells》2014,14(1):135-138
BaCe0.8Pr0.2O3 (BCP20) and BaCe0.6Pr0.4O3 (BCP40) powders are successfully synthesized through the Pechini method and used as the cathode materials for proton‐conducting solid state oxide fuel cells (SOFCs). The prepared cells consisting of the structure of a BaZr0.1Ce0.7Y0.2O3–δ (BZCY7)‐NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane, and a cathode layer, are measured from 600 to 700 °C with humidified hydrogen (∼3% H2O) as the fuel and static air as the oxidant. The electricity results show that the cell with BCP40 cathode has a higher power density, which could obtain an open‐circuit potential of 0.99 V and a maximum power density of 378 mW cm–2 at 700 °C. The polarization resistance measured at the open‐circuit condition of BCP40 is only 0.16 Ω cm2 at 700 °C, which was less than BCP20.  相似文献   

3.
Cobalt–free perovskites Ln0.5Sr0.5Fe0.9Mo0.1O3–δ (Ln = lanthanide; LnSFM) were prepared via a sol–gel process. Pure rhombohedral phases were still not obtained for the samples (Ln = Sm and Gd) even sintered at 1300 °C. Thus, only the LaSFM, PrSFM and NdSFM compositions were assessed as IT–SOFC cathodes in terms of their thermal, electrical and electrochemical properties. Thermal expansion of the LnSFM was well compatible with that of Sm0.2Ce0.8O1.9 (SDC) electrolyte. Both conductivity and electrochemical performances of the LnSFM followed the same sequence of La > Nd > Pr. For the LaSFM, NdSFM and PrSFM cathodes, peak conductivities reached 73, 63 and 59 S·cm–1 at 650 °C; polarization resistances attained 0.211, 0.446 and 0.469 Ω·cm2 at 700 °C; peak power densities of the LnSFM cells with 300–μm–thick SDC electrolyte achieved 269, 261 and 233 mW·cm–2 at 700 °C without cell degradation for operating 100 h. By comprehensive comparison, the LaSFM is assessed as a preferred cobalt–free ceramic cathode for IT–SOFC.  相似文献   

4.
About 20 nm precursor powders for BaCe0.85Y0.15O3−δ (BCY) were synthesized by combustion method. The nanopowder had about 100 times larger specific volume than sintered BCY. A bi-layered proton conducting membrane having a thick porous BCY substrate and an integrally supported dense BCY thin film were co-fabricated facilely by pressing two layers comprising the precursor powder and its mixture with starch, followed by co-sintering at high temperature. Pt was impregnated into the porous BCY layer matrix as anode catalyst for dehydrogenation of ethane to ethylene. A hydrocarbon solid oxide fuel cell with the BCY thin film electrolyte and Pt electrodes demonstrated high selectivity (90.5%) to ethylene at 36.7% ethane conversion with co-generation of 216 mW cm−2 electrical energy output at 700 °C. The ethane conversion and ethylene selectivity increased with current density.  相似文献   

5.
The perovskite proton conductor BaZr0.9Y0.1O2.95 (BZY10) shows better chemical stability but lower conductivity than BaCe0.9Y0.1O2.95 (BCY10). In this paper we attempted to synthesize BCY10:BZY10 core–shell materials in which BCY10 particles prepared by solid reaction were wrapped by a sol–gel deposited thin layer of BZY10 with ZnO as sintering aid to improve the sinterability of the materials. The effects of the BCY10/BZY10 ratios on the phase purity, microstructure, chemical stability and electrical conductivity of the samples were characterized by XRD, TEM, SEM, TGA and electrochemical impedance spectroscopy. A dense core–shell structure was formed after being sintered at 1300 °C for 10 h. The core–shell samples displayed improved stability against CO2 and water vapor at high temperature. With BCY10/BZY10 ratio varying from 9:1 to 7:3, the core–shell samples became more stable, and the total conductivities decreased.  相似文献   

6.
BaZr0.8Y0.2O3–δ, (BZY), a protonic conductor candidate as an electrolyte for intermediate temperature (500–700 °C) solid oxide fuel cells (IT‐SOFCs), was prepared using a sol–gel technique to control stoichiometry and microstructural properties. Several synthetic parameters were investigated: the metal cation precursors were dissolved in two solvents (water and ethylene glycol), and different molar ratios of citric acid with respect to the total metal content were used. A single phase was obtained at a temperature as low as 1,100 °C. The powders were sintered between 1,450 and 1,600 °C. The phase composition of the resulting specimens was investigated using X‐ray diffraction (XRD) analysis. Microstructural characterisation was performed using field emission scanning electron microscopy (FE‐SEM). Chemical stability of the BZY oxide was evaluated upon exposure to CO2 for 3 h at 900 °C, and BZY showed no degradation in the testing conditions. Fuel cell polarisation curves on symmetric Pt/BZY/Pt cells of different thicknesses were measured at 500–700 °C. Improvements in the electrochemical performance were obtained using alternative materials for electrodes, such as NiO‐BZY cermet and LSCF (La0.8Sr0.2Co0.8Fe0.2O3), and reducing the thickness of the BZY electrolyte, reaching a maximum value of power density of 7.0 mW cm–2 at 700 °C.  相似文献   

7.
A proton conducting ceramic fuel cell (PCFC) operating at intermediate temperature has been developed that incorporates electrolyte and electrode materials prepared by flash combustion (yttrium‐doped barium cerate) and auto‐ignition (praseodymium nickelate) methods. The fuel cell components were assembled using an anode‐support approach, with the anode and proton ceramic layers prepared by co‐pressing and co‐firing, and subsequent deposition of the cathode by screen‐printing onto the proton ceramic surface. When the fuel cell was fed with moist hydrogen and air, a high Open Circuit Voltage (OCV > 1.1 V) was observed at T > 550 °C, which was stable for 300 h (end of test), indicating excellent gas‐tightness of the proton ceramic layer. The power density of the fuel cell increased with temperature of operation, providing more than 130 mW cm–2 at 650 °C. Symmetric cells incorporating Ni‐BCY10 cermet and BCY10 electrolyte on the one hand, and Pr2NiO4 + δ and BCY10 electrolyte on the other hand, were also characterised and area specific resistances of 0.06 Ω cm2 for the anode material and 1–2 Ω cm2 for the cathode material were obtained at 600 °C.  相似文献   

8.
B. Guan  Z. Lü  G. Wang  B. Wei  W. Li  X. Huang 《Fuel Cells》2012,12(1):141-145
Fuel cells with BaZr0.1Ce0.7Y0.2O3–δ (BZCY) proton‐conducting electrolyte is fabricated using spray‐modified pressing method. In the present study the spray‐modified pressing technology is developed to prepare thin electrolyte layers on porous Ni‐BZCY anode supports. SEM data show the BZCY electrolyte film is uniform and dense, well‐bonded with the anode substrate. An anode‐supported fuel cell with BZCY electrolyte and Ba0.5Sr0.5Co0.8Fe0.2O3–δ (BSCF) cathode is characterized from 600 to 700 °C using hydrogen as fuel and ambient air as oxidant. Maximum power density of 536 mW cm–2 along with a 1.01 V OCV at 700 °C is obtained. Impedance spectra show that Ohmic resistances contribute minor parts to the total ones, for instance, only ~23% when operating at 600 °C. The results demonstrate that spray‐modified pressing technology offers a simple and effective way to fabricate quality electrolyte film suitable to operate in intermediate temperature.  相似文献   

9.
Electrophoretic deposition (EPD) of 8 mol% yttria‐stabilized zirconia (YSZ) electrolyte thin film has been carried out onto nonconducting porous NiO‐YSZ cermet anode substrate using a fugitive and electrically conducting polymer interlayer for solid oxide fuel cell (SOFC) application. Such polymer interlayer burnt out during the high‐temperature sintering process (1400°C for 6 h) leaving behind a well adhered, dense, and uniform ceramic YSZ electrolyte film on the top of the porous anode substrate. The EPD kinetics have been studied in depth. It is found that homogeneous and uniform film could be obtained onto the polymer‐coated substrate at an applied voltage of 15 V for 1 min. After the half‐cell (anode + electrolyte) is co‐fired at 1400°C, a suitable cathode composition (La0.65Sr0.3MnO3) thick film paste is screen printed on the top of the sintered YSZ electrolyte. A second stage of sintering of such cathode thick film at 1100°C for 2 h finally yield a single cell SOFC. Such single cell produced a power output of 0.91 W/cm2 at 0.7 V when measured at 800°C using hydrogen and oxygen as fuel and oxidant, respectively.  相似文献   

10.
《Ceramics International》2015,41(4):5607-5613
Doped barium cerate is a promising solid electrolyte for intermediate temperature fuel cells as a protonic conductor. In the present paper, the nanocrystalline Gd-doped barium cerate (BaCe0.7Gd0.1Y0.2O2.9) thin films have been successfully deposited on alumina substrate by spray pyrolysis technique. The films deposited from 0.1 M concentration and annealed at five different temperatures were characterized with different physio-chemical techniques. The BCGY is crystallized in orthorhombic perovskite structure with slight shift to the lower 2θ value compared with barium cerate (BC) and yttrium doped barium cerate (BCY). The grain growth and hence densification is also investigated by using SEM and AFM. The grain growth is almost complete at 1000 °C and the surface of the film appears to be smooth with typical roughness of 152 nm. Raman spectrum of BCGY film shows intense band at 463.8 cm−1 compared to pure BC and BCY indicating the presence of more oxygen vacancies due to Gd doping. The proton conductivity of BCGY thin film in moist atmosphere is 1×10−3 Scm−1.  相似文献   

11.
W. Sun  Z. Tao  Z. Shi  L. Yan  Z. Zhu  W. Liu 《Fuel Cells》2010,10(6):1108-1113
Dense proton‐conducting BaZr0.1Ce0.7Y0.2O3 – δ (BZCY) electrolyte membranes were successfully fabricated on NiO–BZCY anode substrates at a low temperature of 1,150 °C via a combined co‐press and co‐firing process. To fabricate full cells, the LaSr3Co1.5Fe1.5O10 – δ–BZCY composite cathode layer was fixed to the electrolyte membrane by two means of one‐step co‐firing and two‐step co‐firing, respectively. The SEM results revealed that the cathode layer bonded more closely to the electrolyte membrane via the one‐step co‐firing process. Correspondingly, determined from the electrochemical impedance spectroscopy measured under open current conditions, the electrode polarisation and Ohmic resistances of the one‐step co‐fired cell were dramatically lower than the other one for its excellent interface adhesion. With humidified hydrogen (2% H2O) as the fuel and static air as the oxidant, the maximum power density of the one‐step co‐fired single cell achieved 328 mW cm–2 at 700 °C, showing a much better performance than that of the two‐step co‐fired single cell, which was 264 mW cm–2 at 700 °C.  相似文献   

12.
Y. Ling  L. Zhao  X. Liu  B. Lin 《Fuel Cells》2015,15(2):384-389
Layered perovskite oxide YBaCuCoO5+x (YBCC) was synthesized by an EDTA‐citrate complexation process and was investigated as a novel cathode for proton‐conducting intermediate temperature solid oxide fuel cells (IT‐SOFCs). The thermal expansion coefficient (TEC) of YBCC was 15.3 × 10−6 K−1 and the electrical conductivity presented a semiconductor‐like behavior with the maximum value of 93.03 Scm−1 at 800 °C. Based on the defect chemistry analysis, the electrical conductivity gradually decreases by the introduction of Cu into Co sites of YBaCo2O5+x and the conductor mechanism can transform from the metallic‐like behavior to the semiconductor‐like behavior. Thin proton‐conducting (BaZr0.1Ce0.7Y0.1Yb0.1O3–δ) BZCYYb electrolyte and NiO–BZCYYb anode functional layer were prepared over porous anode substrates composed of NiO–BZCYYb by a one‐step dry‐pressing/co‐firing process. Laboratory‐sized quad‐layer cells of NiO‐BZCYYb / NiO‐BZCYYb / BZCYYb / YBCC with a 20 μm‐thick BZCYYb electrolyte membrane exhibited the maximum power density as high as 435 mW cm−2 with an open‐circuit potential (OCV) of 0.99 V and a low interfacial polarization resistance of 0.151 Ωcm2 at 700 °C. The experimental results have indicated that the layered perovskite oxide YBCC can be a cathode candidate for utilization as proton‐conducting IT‐SOFCs.  相似文献   

13.
F. Zhang  Z. Yang  H. Wang  W. Wang  G. Ma 《Fuel Cells》2012,12(5):749-753
A series of cobalt‐free perovskite‐type cathode materials La0.6Sr0.4Fe1–xNixO3–δ (0 ≤ x ≤ 0.15) for intermediate temperature solid oxide fuel cells (IT‐SOFCs) are prepared by a citric‐nitrate process. The conductivities of the cathode materials are measured as functions of temperature (300–800 °C) in air by AC impedance method, and the La0.6Sr0.4Fe0.9Ni0.1O3–δ (LSFN10) has the highest conductivity to be 160 S cm–1 at 400 °C. A single IT‐SOFC based on LSFN10 cathode, BaZr0.1Ce0.7Y0.2O3–δ electrolyte membrane and Ni–BaZr0.1Ce0.7Y0.2O3–δ anode substrate was fabricated by a simple spin‐coating process, and the performances of the cell using hydrogen as fuel and air as the oxidant were researched by electrochemical methods at 600–700 °C. The maximum power densities of the cell are 405 mW cm–2 at 700 °C, 238 mW cm–2 at 650 °C, and 140 mW cm–2 at 600 °C, respectively. The results indicate that the LSFN10 is a promising cathode material for proton conducting IT‐SOFCs.  相似文献   

14.
《Ceramics International》2015,41(6):7651-7660
We describe the manufacture and electrochemical characterization of micro-tubular anode supported solid oxide fuel cells (mT-SOFC) operating at intermediate temperatures (IT) using porous gadolinium-doped ceria (GDC: Ce0.9Gd0.1O2−δ) barrier layers. Rheological studies were performed to determine the deposition conditions by dip coating of the GDC and cathode layers. Two cell configurations (anode/electrolyte/barrier layer/cathode): single-layer cathode (Ni–YSZ/YSZ/GDC/LSCF) and double-layer cathode (Ni–YSZ/YSZ/GDC/LSCF–GDC/LSCF) were fabricated (YSZ: Zr0.92Y0.16O2.08; LSCF: La0.6Sr0.4Co0.2Fe0.8O3−δ). Effect of sintering conditions and microstructure features for the GDC layer and cathode layer in cell performance was studied. Current density–voltage (j–V) curves and impedance spectroscopy measurements were performed between 650–800 °C, using wet H2 as fuel and air as oxidant. The double-cathode cells using a GDC layer sintered at 1400 °C with porosity about 50% and pores and grain sizes about 1 μm, showed the best electrochemical response, achieving maximum power densities of up to 160 mW cm−2 at 650 °C and about 700 mW cm−2 at 800 °C. In this case GDC electrical bridges between cathode and electrolyte are preserved free of insulating phases. A preliminary test under operation at 800 °C shows no degradation at least during the first 100 h. These results demonstrated that these cells could compete with standard IT-SOFC, and the presented fabrication method is applicable for industrial-scale.  相似文献   

15.
0.2PbNi1/3Nb2/3–0.8Pb(Zr,Ti)O3 (PNN–PZT) thick films were deposited on Pt wire with the diameter of 50 μm by electrophoretic deposition (EPD) method. The EPD deposition times on the microstructures of PNN–PZT thick films were investigated. By optimizing the EPD process, the Pt wire can be uniformly wrapped with the PNN–PZT powders. During the sintering process, the as-deposited PNN–PZT/Pt wires were buried in the mixed powders of PbCO3 and ZrO2, and then sintered in the optimal temperature to get a dense microstructure. The piezoelectric properties of the thick films were characterized by scanning force microscopy (SFM) method. The results show that the PNN–PZT thick films prepared by EPD method have good piezoelectricity.  相似文献   

16.
We describe a solid state reaction for the preparation of both NiO–BaCe0.7Ta0.1Y0.2O3?δ anode substrates and BaCe0.7Ta0.1Y0.2O3?δ (BCTY10) electrolyte membranes on porous NiO–BCTY10 anode substrates. The amounts of the pore forming additive in the substrates showed a significant influence on the densification of the BCTY10 membranes. After sintering at 1450 °C for 5 h, the BCTY10 membrane on a NiO–BCTY10 anode containing 30 wt.% starch achieved a high density and showed adequate chemical stability against H2O and CO2. The chemical stability of BCTY10 was even better than that of BaCe0.7Zr0.1Y0.2O3?δ. With a mixture of BaCe0.7Zr0.1Y0.2O3?δ (BZCY7) and La0.7Sr0.3FeO3?δ (LSF) as a cathode, a single fuel cell with 12 μm thick BCTY10 electrolyte generated maximum power densities of 142, 93, 29 mW/cm2 at 700, 600 and 500 °C, respectively. The electrolyte resistance and interfacial polarization resistance of the cell under open circuit conditions were also investigated.  相似文献   

17.
C. Fu  X. Ge  S. H. Chan  Q. Liu 《Fuel Cells》2012,12(3):450-456
Large‐size, 9.5 cm × 9.5 cm, Ni‐Gd0.1Ce0.9O1.95 (Ni‐GDC) anode‐supported solid oxide fuel cell (SOFC) has been successfully fabricated with NiO‐GDC anode substrate prepared by tape casting method and thin‐film GDC electrolyte fabricated by screen‐printing method. Influence of the sintering shrinkage behavior of NiO‐GDC anode substrate on the densification of thin GDC electrolyte film and on the flatness of the co‐sintered electrolyte/anode bi‐layer was studied. The increase in the pore‐former content in the anode substrate improved the densification of GDC electrolyte film. Pre‐sintering temperature of the anode substrate was optimized to obtain a homogeneous electrolyte film, significantly reducing the mismatch between the electrolyte and anode substrate and improving the electrolyte quality. Dense GDC electrolyte film and flat electrolyte/anode bi‐layer can be fabricated by adding 10 wt.% of pore‐former into the composite anode and pre‐sintering it at 1,100 °C for 2 h. Composite cathode, La0.6Sr0.4Fe0.8Co0.2O3, and GDC (LSCF‐GDC), was screen‐printed on the as‐prepared electrolyte surface and sintered to form a complete single cell. The maximum power density of the single cell reached 497 mW cm–2 at 600 °C and 953 mW cm–2 at 650 °C with hydrogen as fuel and air as oxidant.  相似文献   

18.
The physico-chemical properties of two protonic electrolytes BaCe0.8Y0.2O3-δ and BaCe0.9Y0.1O3-δ were investigated. The BaCe0.8Y0.2O3-δ electrolyte showed better crystallographic purity and lower amount of carbonate phase on the surface. A comparison between the BaCe0.8Y0.2O3-δ protonic electrolyte supported cell and an anionic (Ce0.8Gd0.2O1.95) one was made. The maximum power densities (IR-free) of 183 mW cm−2 and 400 mW cm−2 were obtained in H2 (R.H. 3%) at 700 °C, for the protonic and anionic electrolyte based cells, respectively.  相似文献   

19.
Z. Tao  G. Hou  Q. Zhang  S. Sang  F. Xing  B. Wang 《Fuel Cells》2016,16(2):263-266
Ba0.5Sr0.5Co0.7In0.1Fe0.2O3−δ powders are successfully synthesized as the cathode materials for proton‐conducting solid oxide fuel cells (SOFCs). The prepared cells consisting of the structure of a BaZr0.1Ce0.7Y0.2O3−δ (BZCY7)‐NiO anode substrate, a BZCY7 electrolyte membrane and a cathode layer, are measured from 600 to 700 °C with humidified hydrogen (ca. 3% H2O) as the fuel. The electrochemical results show that the cell exhibits a high power density which could obtain an open‐circuit potential of 0.986 V and a maximum power density of 400.84 mW cm−2 at 700 °C. The polarization resistance measured at the open‐circuit condition is only 0.15 Ω cm2 at 700 °C.  相似文献   

20.
《Ceramics International》2017,43(8):6487-6493
Perovskite oxides LaxSr1–xCo0.9Sb0.1O3–δ (LSCSbx, x=0.0–0.8) are investigated as IT–SOFC cathodes supported with La0.9Sr0.1Ga0.8Mg0.2O3–δ (LSGM) electrolyte. All LSCSbx oxides have a tetragonal distorted perovskite structure with s.g. P4/mmm, while a La2Co2O5 impurity phase was observed within La doping levels at x=0.6–0.8. The LSCSb0.4 has a good chemical compatibility with LSGM electrolyte for temperatures up to 1050 °C. XPS examinations indicate the existence of Co3+/Co4+ mixed valence states in LSCSbx. The conductivity increases with La doping and the LSCSbx with x=0.4 exhibits the highest electrical conductivity (e.g., 673–1637 S cm−1 at 300–850 °C). The thermal expansion coefficient (TEC) decreases from 25.89×10–6 K–1 for x=0.0 to 18.5×10–6 K–1 for x=0.6 at 30–900 °C. Among the LSCSbx compositions, the LSCSb0.2 exhibits the lowest polarization resistance (Rp), which is merely 0.069 Ω cm2 at 700 °C. The maximum power density of the cell with LSCSb0.2 cathode on 300 µm thick LSGM electrolyte attains 564 mW cm–2 at 850 °C, which is higher than that of SrCo0.9Sb0.1O3–δ (SCSb) cathode. All of the results indicate that LSCSb0.2 is a promising material for application in IT–SOFCs cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号