首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To balance multiple scheduling performance requirements on parallel computer systems, traditional job schedulers use many parameters that can be configured to define job or queue priorities. Offering many parameters seems flexible, but in reality tuning the values for the parameters is highly challenging. To simplify the task of resource management, we propose goal-oriented policies, which allow system administrators to specify high-level performance objectives, rather than tuning low-level scheduling parameters. We study the design of goal-oriented policies, including (1) appropriate multi-objective models for specifying trade-offs between objectives, (2) efficient search algorithms for searching the best schedule at each scheduling decision point, and (3) appropriate performance measures to be optimized in the objectives with respect to two common performance requirements: preventing starvation and favoring shorter jobs. We compare goal-oriented policies with widely used backfill policies. Policies are evaluated by simulation using ten monthly workloads that ran on a Linux cluster (IA-64) from NCSA. Our results show that by automatically optimizing performance according to the given objectives through search, goal-oriented policies can simultaneously outperform FCFS-backfill and LXF-backfill, which are designed in favor of the maximum wait and average slowdown, respectively.  相似文献   

2.
对于HPC用户来说,计算成本是迁云所考虑的重要因素之一,阿里云上提供的抢占式实例,是一种按需实例,旨在降低使用公共云计算资源成本,抢占式实例市场价格是波动的,通常远低于正常的按需实例,甚至达到正常按需实例的一折。抢占式实例一般会在创建时为用户保留一段最短时间,过后有可能会被释放,所以一般适用于无状态的应用场景。提出在公共云上的自动伸缩策略,其面向通用的HPC集群调度器,基于用户的应用软件类型、提交作业规律以及用户对性能和成本等多方面需求,自动在云上部署扩容计算资源,控制成本。对用户来说,可以做到"only pay for what you want and what you use"。基于公共云上丰富的资源规格类型和售卖方式,利用自动伸缩服务,抢占式实例,断点续算等技术可以配置低成本的公共云上HPC自动伸缩方案:用户提交作业的同时可以指定成本上限,自动伸缩服务自动在低于此成本的前提下寻找和扩容抢占式计算资源,同时利用断点续算功能保证作业在计算资源切换的时候可以继续运算。最后,通过LAMMPS和GROMACS两个高性能应用实例验证了该策略的可行性和有效性。  相似文献   

3.
Most parallel computing platforms are controlled by batch schedulers that place requests for computation in a queue until access to compute nodes is granted. Queue waiting times are notoriously hard to predict, making it difficult for users not only to estimate when their applications may start, but also to pick among multiple batch-scheduled platforms the one that will produce the shortest turnaround time. As a result, an increasing number of users resort to “redundant requests”: several requests are simultaneously submitted to multiple batch schedulers on behalf of a single job; once one of these requests is granted access to compute nodes, the others are canceled. Using simulation as well as experiments with a production batch scheduler we evaluate the impact of redundant requests on (1) average job performance, (2) schedule fairness, (3) system load, and (4) system predictability. We find that some of the popularly held beliefs about the harmfulness of redundant batch requests are unfounded. We also find that the two most critical issues with redundant requests are the additional load on current middleware infrastructures and unfairness towards users who do not use redundant requests. Using our experimental results we quantify both impacts in terms of the number of users who use redundant requests and of the amount of request redundancy these users employ. This work was supported by the NSF under Award 0546688.  相似文献   

4.
用爬山法实现无中心式网格调度   总被引:1,自引:0,他引:1  
为方便网格资源的扩展,网格调度应当是无中心的.为在尽可能多的计算资源中为单地点作业优化资源选择,这里采用了爬山算法.当一个网格调度器收到一个单地点作业,爬山法被激活,根据网格调度器之间的相邻关系为作业找出最适合的计算系统,这里每个计算系统的适合度用预测的作业响应时间表示.实验模拟了无中心式网格调度与计算系统之间的性能差别,每个计算系统的本地调度采用保守式装填法,网格工作负荷由模型得到,并用一段工作负荷的平均响应时间衡量调度性能.实验结果表明,即使在作业提交点分布不均匀且运行时间估计不准确情况下,爬山法仍可有效改善单地点作业的调度.  相似文献   

5.
Scheduling disciplines have traditionally been specified in terms of a queue structure and algorithms for routing jobs within this structure. Alternatively, a discipline may be formally defined by a policy function, a function of job and system parameters. A policy function scheduler is a parameterized scheduler that — when supplied with a specific policy function — behaves like the specified discipline. The formal definition allows performance measures of a discipline (e.g., the response function) to be expressed in terms of the defining policy function. We review the principles of formal definitions, summarize previous queueing-theoretical results concerning response functions of policy function schedulers, and extend them to multiple preemptive job classes with processor-sharing subclasses. For a large variety of disciplines and job classes, we also express the policy functions in terms of the resulting response functions. Given a desired realizable performance goal, this relation serves to determine the discipline that achieves it. Policy function schedulers with their explicit relation between policy and response functions, which we plot for several different job characteristics, thus offer increased precision in controlling the performance of a computer system.  相似文献   

6.
David M. Rogers 《Software》2023,53(1):99-114
Runtime scheduling and workflow systems are an increasingly popular algorithmic component in HPC because they allow full system utilization with relaxed synchronization requirements. There are so many special-purpose tools for task scheduling, one might wonder why more are needed. Use cases seen on the Summit supercomputer needed better integration with MPI and greater flexibility in job launch configurations. Preparation, execution, and analysis of computational chemistry simulations at the scale of tens of thousands of processors revealed three distinct workflow patterns. A separate job scheduler was implemented for each one using extremely simple and robust designs: file-based, task-list based, and bulk-synchronous. Comparing to existing methods shows unique benefits of this work, including simplicity of design, suitability for HPC centers, short startup time, and well-understood per-task overhead. All three new tools have been shown to scale to full utilization of Summit, and have been made publicly available with tests and documentation. This work presents a complete characterization of the minimum effective task granularity for efficient scheduler usage scenarios. These schedulers have the same bottlenecks, and hence similar task granularities as those reported for existing tools following comparable paradigms.  相似文献   

7.
由于科学研究与商业应用等对高性能计算的需求与日俱增,高性能计算的性能和系统规模得到迅速发展。但是,急剧增长的功耗严重限制了高性能计算系统的设计和使用,使得低功耗技术成为高性能计算领域的关键技术。作为整个系统的核心组件,作业调度系统立足有限的系统资源,对用户提交的应用进行作业-资源分配,其能效性对于整个高性能计算系统的能耗控制与调节起到至关重要的作用。首先介绍主要的能量效率技术和常用的作业调度策略,然后对当前高性能计算作业调度能效性进行分析,并讨论了其面临的挑战及未来发展方向。  相似文献   

8.
Each job scheduler in large decentralized load balancing systems generally must consider whether it is advantageous to offload jobs to remote computation servers when the local load is too high. Although processing power may appear to be available at a very distant server, two problems arise due to the transmission delay between the scheduler and server. Predictably, the response time of the job is adversely affected as the job spends valuable time in transit, but a more subtle problem involves the value, or reliability, of the state information regarding job queues. The longer the delay between scheduler and server, the less a scheduler should value the state information of the server (given that the state changes over time). We examine the performance of schedulers in topologies with different average proximity and show a probabilistic algorithm that allows schedulers to dynamically form efficient clusters in the network.  相似文献   

9.
Clusters of computers have emerged as mainstream parallel and distributed platforms for high‐performance, high‐throughput and high‐availability computing. To enable effective resource management on clusters, numerous cluster management systems and schedulers have been designed. However, their focus has essentially been on maximizing CPU performance, but not on improving the value of utility delivered to the user and quality of services. This paper presents a new computational economy driven scheduling system called Libra, which has been designed to support allocation of resources based on the users' quality of service requirements. It is intended to work as an add‐on to the existing queuing and resource management system. The first version has been implemented as a plugin scheduler to the Portable Batch System. The scheduler offers market‐based economy driven service for managing batch jobs on clusters by scheduling CPU time according to user‐perceived value (utility), determined by their budget and deadline rather than system performance considerations. The Libra scheduler has been simulated using the GridSim toolkit to carry out a detailed performance analysis. Results show that the deadline and budget based proportional resource allocation strategy improves the utility of the system and user satisfaction as compared with system‐centric scheduling strategies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Fairness is an important aspect in queuing systems. Several fairness measures have been proposed in queuing systems in general and parallel job scheduling in particular. Generally, a scheduler is considered unfair if some jobs are discriminated whereas others are favored. Some of the metrics used to measure fairness for parallel job schedulers can imply unfairness where there is no discrimination (and vice versa). This makes them inappropriate. In this paper, we show how the existing approach misrepresents fairness in practice. We then propose a new approach for measuring fairness for parallel job schedulers. Our approach is based on two principles: (i) as jobs have different resource requirements and find different queue/system states, they need not have the same performance for the scheduler to be fair and (ii) to compare two schedulers for fairness, we make comparisons of how the schedulers favor/discriminate individual jobs. We use performance and discrimination trends to validate our approach. We observe that our approach can deduce discrimination more accurately. This is true even in cases where the most discriminated jobs are not the worst performing jobs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infrastructures (Clouds) delivering execution and storage services. The paradigm, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. The goal of this work is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are launched in appropriate hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very important and it is necessary to develop efficient scheduling strategies to appropriately allocate VMs to physical resources. The job scheduling problem is however NP-complete, and therefore many heuristics have been developed. In this work, we describe and evaluate a Cloud scheduler based on Ant Colony Optimization (ACO). The main performance metrics to study are the number of serviced users by the Cloud and the total number of created VMs in online (non-batch) scheduling scenarios. Besides, the number of intra-Cloud network messages sent are evaluated. Simulated experiments performed using CloudSim and job data from real scientific problems show that our scheduler succeeds in balancing the studied metrics compared to schedulers based on Random assignment and Genetic Algorithms.  相似文献   

12.
为了能有效处理海量数据,进行关联分析、商业预测等,Hadoop分布式云计算平台应运而生。但随着Hadoop的广泛应用,其作业调度方面的不足也显现出来,现有的多种作业调度器存在参数设置复杂、启动时间长等缺陷。借助于人工蜂群算法的自组织性强、收敛速度快的优势,设计并实现了能实时检测Hadoop内部资源使用情况的资源感知调度器。相比于原有的作业调度器,该调度器具有参数设置少、启动速度快等优势。基准测试结果表明,该调度器在异构集群上,调度资源密集型作业比原有调度器快10%~20%左右。  相似文献   

13.
Grid computing is a largely adopted paradigm to federate geographically distributed data centers. Due to their size and complexity, grid systems are often affected by failures that may hinder the correct and timely execution of jobs, thus causing a non-negligible waste of computing resources. Despite the relevance of the problem, state-of-the-art management solutions for grid systems usually neglect the identification and handling of failures at runtime. Among the primary goals to be considered, we claim the need for novel approaches capable to achieve the objectives of scalable integration with efficient monitoring solutions and of fitting large and geographically distributed systems, where dynamic and configurable tradeoffs between overhead and targeted granularity are necessary. This paper proposes GAMESH, a Grid Architecture for scalable Monitoring and Enhanced dependable job ScHeduling. GAMESH is conceived as a completely distributed and highly efficient management infrastructure, concentrating on two crucial aspects for large-scale and multi-domain grid environments: (i) the scalable dissemination of monitoring data and (ii) the troubleshooting of job execution failures. GAMESH has been implemented and tested in a real deployment encompassing geographically distributed data centers across Europe. Experimental results show that GAMESH (i) enables the collection of measurements of both computing resources and conditions of task scheduling at geographically sparse sites, while imposing a limited overhead on the entire infrastructure, and (ii) provides a failure-aware scheduler able to improve the overall system performance, even in the presence of failures, by coordinating local job schedulers at multiple domains.  相似文献   

14.
Nowadays, high-performance computing (HPC) clusters are increasingly popular. Large volumes of job logs recording many years of operation traces have been accumulated. In the same time, the HPC cloud makes it possible to access HPC services remotely. For executing applications, both HPC end-users and cloud users need to request specific resources for different workloads by themselves. As users are usually not familiar with the hardware details and software layers, as well as the performance behavior of the underlying HPC systems. It is hard for them to select optimal resource configurations in terms of performance, cost, and energy efficiency. Hence, how to provide on-demand services with intelligent resource allocation is a critical issue in the HPC community. Prediction of job characteristics plays a key role for intelligent resource allocation. This paper presents a survey of the existing work and future directions for prediction of job characteristics for intelligent resource allocation in HPC systems. We first review the existing techniques in obtaining performance and energy consumption data of jobs. Then we survey the techniques for single-objective oriented predictions on runtime, queue time, power and energy consumption, cost and optimal resource configuration for input jobs, as well as multi-objective oriented predictions. We conclude after discussing future trends, research challenges and possible solutions towards intelligent resource allocation in HPC systems.  相似文献   

15.
Performance of disk I/O schedulers is affected by many factors, such as workloads, file systems, and disk systems. Disk scheduling performance can be improved by tuning scheduler parameters, such as the length of read timers. Scheduler performance tuning is mostly done manually. To automate this process, we propose four self-learning disk scheduling schemes: Change-sensing Round-Robin, Feedback Learning, Per-request Learning, and Two-layer Learning. Experiments show that the novel Two-layer Learning Scheme performs best. It integrates the workload-level and request-level learning algorithms. It employs feedback learning techniques to analyze workloads, change scheduling policy, and tune scheduling parameters automatically. We discuss schemes to choose features for workload learning, divide and recognize workloads, generate training data, and integrate machine learning algorithms into the Two-layer Learning Scheme. We conducted experiments to compare the accuracy, performance, and overhead of five machine learning algorithms: Decision Tree, Logistic Regression, Naïve Bayes, Neural Network, and Support Vector Machine Algorithms. Experiments with real-world and synthetic workloads show that self-learning disk scheduling can adapt to a wide variety of workloads, file systems, disk systems, and user preferences. It outperforms existing disk schedulers by as much as 15.8% while consuming less than 3%-5% of CPU time.  相似文献   

16.
Hardware monitoring through performance counters is available on almost all modern processors. Although these counters are originally designed for performance tuning, they have also been used for evaluating power consumption. We propose two approaches for modelling and understanding the behaviour of high performance computing (HPC) systems relying on hardware monitoring counters. We evaluate the effectiveness of our system modelling approach considering both optimizing the energy usage of HPC systems and predicting HPC applications’ energy consumption as target objectives. Although hardware monitoring counters are used for modelling the system, other methods–including partial phase recognition and cross platform energy prediction–are used for energy optimization and prediction. Experimental results for energy prediction demonstrate that we can accurately predict the peak energy consumption of an application on a target platform; whereas, results for energy optimization indicate that with no a priori knowledge of workloads sharing the platform we can save up to 24% of the overall HPC system’s energy consumption under benchmarks and real-life workloads.  相似文献   

17.
High‐performance application development remains challenging, particularly for scientists making the transition to a heterogeneous grid environment. In general areas of computing, virtual environments such as Java and .Net have proved to be successful in fostering application development, allowing users to target and compile to a single environment, rather than a range of platforms, instruction sets and libraries. However, existing runtime environments are focused on business and desktop computing and they do not support the necessary high‐performance computing (HPC) abstractions required by e‐Scientists. Our work is focused on developing an application‐runtime that can support these services natively. The result is a new approach to the development of an application‐runtime for HPC: the Motor system has been developed by integrating a high‐performance communication library directly within a virtual machine. The Motor message passing library is integrated alongside and in cooperation with other runtime libraries and services while retaining a strong message passing performance. As a result, the application developer is provided with a common environment for HPC application development. This environment supports both procedural languages, such as C, and modern object‐oriented languages, such as C#. This paper describes the unique Motor architecture, presents its implementation and demonstrates its performance and use. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The energy consumption of High Performance Computing (HPC) systems, which are the key technology for many modern computation-intensive applications, is rapidly increasing in parallel with their performance improvements. This increase leads HPC data centers to focus on three major challenges: the reduction of overall environmental impacts, which is driven by policy makers; the reduction of operating costs, which are increasing due to rising system density and electrical energy costs; and the 20 MW power consumption boundary for Exascale computing systems, which represent the next thousandfold increase in computing capability beyond the currently existing petascale systems. Energy efficiency improvements will play a major part in addressing these challenges.This paper presents a toolset, called Power Data Aggregation Monitor (PowerDAM), which collects and evaluates data from all aspects of the HPC data center (e.g. environmental information, site infrastructure, information technology systems, resource management systems, and applications). The aim of PowerDAM is not to improve the HPC data center's energy efficiency, but is to collect energy relevant data for analysis without which energy efficiency improvements would be non-trivial and incomplete. Thus, PowerDAM represents a first step towards a truly unified energy efficiency evaluation toolset needed for improving the overall energy efficiency of HPC data centers.  相似文献   

19.
Object-based parallel file systems have emerged as promising storage solutions for high-performance computing (HPC) systems. Despite the fact that object storage provides a flexible interface, scheduling highly concurrent I/O requests that access a large number of objects still remains as a challenging problem, especially in the case when stragglers (storage servers that are significantly slower than others) exist in the system. An efficient I/O scheduler needs to avoid possible stragglers to achieve low latency and high throughput. In this paper, we introduce a log-assisted straggler-aware I/O scheduling to mitigate the impact of storage server stragglers. The contribution of this study is threefold. First, we introduce a client-side, log-assisted, straggler-aware I/O scheduler architecture to tackle the storage straggler issue in HPC systems. Second, we present three scheduling algorithms that can make efficient decision for scheduling I/Os while avoiding stragglers based on such an architecture. Third, we evaluate the proposed I/O scheduler using simulations, and the simulation results have confirmed the promise of the newly introduced straggler-aware I/O scheduler.  相似文献   

20.
Production parallel systems are space‐shared, and resource allocation on such systems is usually performed using a batch queue scheduler. Jobs submitted to the batch queue experience a variable delay before the requested resources are granted. Predicting this delay can assist users in planning experiment time‐frames and choosing sites with less turnaround times and can also help meta‐schedulers make scheduling decisions. In this paper, we present an integrated adaptive framework, Qespera, for prediction of queue waiting times on parallel systems. We propose a novel algorithm based on spatial clustering for predictions using history of job submissions and executions. The framework uses adaptive set of strategies for choosing either distributions or summary of features to represent the system state and to compare with history jobs, varying the weights associated with the features for each job prediction, and selecting a particular algorithm dynamically for performing the prediction depending on the characteristics of the target and history jobs. Our experiments with real workload traces from different production systems demonstrate up to 22% reduction in average absolute error and up to 56% reduction in percentage prediction error over existing techniques. We also report prediction errors of less than 1 h for a majority of the jobs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号