首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of CO oxidation performance variations between three different supported Au catalysts (Au/CeO2, Au/Al2O3, Au/TiO2) was examined by in situ XAFS and DRIFTS measurements. All samples were prepared identically, by deposition-precipitation of an aqueous Au(III) complex with urea, and contained the same gold loading (~1 wt %). The as-prepared supported Au(III) precursors exhibited different reduction behaviour during exposure to the CO/O2/He reaction mixture at 298 K. The reducibility of the Au(III) precursor was found to decrease as a function of the support material in the order: titania > ceria > alumina. The as-prepared samples were inactive catalysts, but Au/TiO2 and Au/CeO2 developed catalytic activity as the reduction of Au(III) to metallic Au proceeded. Au/Al2O3 remained inactive. The developed catalytic CO oxidation activity at 298 K varied as a function of the support as follows: titania > ceria > alumina ~ 0. The EXAFS of samples pretreated in air at 773 K and in H2 at 573 K reveals the presence of only metallic particles for Au/TiO2 and Au/Al2O3. Au(III) supported on CeO2 remains unreduced after calcination, but reduces during the treatment with H2. CO oxidation experiments performed at 298 K with the activated samples show that the presence of metallic gold is necessary to obtain active catalysts (Au/CeO2 is not active after calcination) and that the reducible supports facilitate the genesis of active catalysts, while metallic gold particles on alumina are not active.  相似文献   

2.
Supported gold catalysts derived from interaction of a Au–phosphine complex Au(PPh3)(NO3) (1) with conventional titanium oxide TiO2 and as-precipitated titanium hydroxide (*, as-precipitated) have been characterized by means of XRD, XPS, EXAFS, and CP/MAS–NMR. The Au complex 1 was supported on TiO2 and without loss of Au–P bonding at room temperature. The Au complex 1 on TiO2 was readily and completely decomposed to form metallic gold particles by calcination at 473 K, whereas only a small part of the complex 1 on was transformed to metallic gold particles. By calcination of 1/ at 573 K the formation of both metallic gold particles and crystalline titanium oxides became notable as evidenced by XRD, XPS and CP/MAS–NMR. The mean diameter of Au particles in 1/ calcined at 673 K was less than 30 Å as estimated from Au(2 0 0) diffraction, which was about one-tenth of that for the corresponding 1/TiO2. Thus the as-precipitated titanium hydroxide was able to stabilize the Au complex 1 to lead to the simultaneous decomposition of Au complex and . The catalyst 1/ calcined at 673 K afforded remarkably high catalytic activity for low-temperature CO oxidation at 273–373 K as compared to the catalyst 1/TiO2.  相似文献   

3.
Hydrogen production by partial oxidation of methanol (POM) was investigated over Au–Ru/Fe2O3 catalyst, prepared by deposition–precipitation. The activity of Au–Ru/Fe2O3 catalyst was compared with bulk Fe2O3, Au/Fe2O3 and Ru/Fe2O3 catalysts. The reaction parameters, such as O2/CH3OH molar ratio, calcination temperature and reaction temperature were optimized. The catalysts were characterized by ICP, XRD, TEM and TPR analyses. The catalytic activity towards hydrogen formation is found to be higher over the bimetallic Au–Ru/Fe2O3 catalyst compared to the monometallic Au/Fe2O3 and Ru/Fe2O3 catalysts. Bulk Fe2O3 showed negligible activity towards hydrogen formation. The enhanced activity and stability of the bimetallic Au–Ru/Fe2O3 catalyst has been explained in terms of strong metal–metal and metal–support interactions. The catalytic activity was found to depend on the partial pressure of oxygen, which also plays an important role in determining the product distribution. The catalytic behavior at various calcination temperatures suggests that chemical state of the support and particle size of Au and Ru plays an important role. The optimum calcination temperature for hydrogen selectivity is 673 K. The catalytic performance at various reaction temperatures, between 433 and 553 K shows that complete consumption of oxygen is observed at 493 K. Methanol conversion increases with rise in temperature and attains 100% at 523 K; hydrogen selectivity also increases with rise in temperature and reaches 92% at 553 K. The overall reactions involved are suggested as consecutive methanol combustion, partial oxidation, steam reforming and decomposition. CO produced by methanol decomposition is subsequently transformed into CO2 by the water gas shift and CO oxidation reactions.  相似文献   

4.
Gold nanoclusters on TiO2 powder were prepared from adsorbed AuIII(CH3)2(C5H7O2) (dimethyl acetylacetonate gold(III)) and characterized by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. The samples were tested as catalysts for CO oxidation at 298 K and atmospheric pressure and characterized by EXAFS and XANES with the catalysts in the working state. The XANES results identify Au(III) in the initially prepared sample, and the EXAFS data indicate mononuclear gold complexes as the predominant surface gold species in this sample, consistent with the lack of Au–Au contributions in the EXAFS spectrum. The mononuclear gold complex is bonded to two oxygen atoms of the TiO2 surface at an Au–O distance of 2.16 Å. Treatment of this complex in He or in H2 at increasing temperatures led to formation of metallic gold clusters of increasing size, ultimately those with an average diameter of about 15 Å. The data demonstrate the presence of metallic gold clusters in the working catalysts and also show these clusters alone are not responsible for the catalytic activity.  相似文献   

5.
Procedures leading to the preservation of activity of supported gold catalysts for CO oxidation are reviewed. The inclusion of iron as Fe(OH)3 in preparing catalysts using tin oxide, ceria and zirconia as supports gives better activity and much improved stability with time-on-stream. In the case of Au/Fe-SnO2 (0.5–0.9% Au), the effect is maximal with ~4% Fe. The stability of catalysts based on ceria as support is also much better when small amounts of either iron or lanthanum during preparation of the support by thermal decomposition of nitrates. Au/SnO2 catalysts often suffer initial deactivation followed by an increase in activity with time-on-stream; a period of refrigeration (7d) induces an excellent stability at high conversion.  相似文献   

6.
Following the success of Auranofin as an anti-arthritic drug, search for novel gold drugs has afforded a large number of [L−Au(PPh3)] complexes that exhibit notable salutary effects. Unlike Au(III)-containing species, these gold complexes with {Au(PPh3)}+ moiety are stable in biological media and readily exchange L with S- and Se-containing enzymes or proteins. Such exchange leads to rapid reduction of microbial loads or induction of apoptotic cell death at malignant sites. In many cases the lipophilic {Au(PPh3)}+ moiety delivers a desirable toxic L to the specific cellular target in addition to exhibiting its own beneficial activity. Further research and utilization of this synthon in drug design could lead to novel chemotherapeutics for treatment of drug-resistant pathogens and cancers.  相似文献   

7.
Supported gold catalysts on the mesoporous (MSP) metal oxides were prepared by a one-step, ultrasound-assisted reduction method, and characterized by XRD, HRTEM, EDX, BET, and XPS analysis. Their catalytic activities were examined in the oxidation of CO. Compared to the Au/Fe2O3(MSP) catalyst, the Au/TiO2(MSP) and Au/Fe2O3-TiO2(MSP) catalysts exhibited higher catalytic activity in the oxidation of CO at low temperatures. The high catalytic activity of Au/TiO2(MSP) was attributed to the metallic state of the gold nanoparticles, their small size (2–2.5 nm), and their high dispersion on the catalyst support.  相似文献   

8.
Au/ZnO, Pd/ZnO and Au–Pd/ZnO catalysts were prepared by PVP-stabilized reduction method by C2H5OH. The catalysts have been used successfully for hydrogen production by partial oxidation of methanol (POM). The influence of Au, Pd and Au–Pd on the performance of supported catalysts for POM has been investigated. The prepared samples were characterized by ICP, XRD, BET, TPR and TPD. The results show that the Au–Pd/ZnO catalyst are more active and exhibit higher hydrogen selectively compared to the Pd/ZnO and Au/ZnO catalyst, the methanol conversion of 99.5% and hydrogen selectivity of 65.6% were obtained at 573 K. The enhanced activity and stability of the bimetallic Au–Pd/ZnO catalyst has been explained in terms of the higher dispersion and basic density, smaller particles of gold and synergetic effect between gold and palladium.  相似文献   

9.
《Catalysis communications》2011,16(1):108-112
This contribution describes the effect of SBA-15 substrate modification with variable amounts of Fe2O3 (5, 10, 15 and 20 wt.%) on the catalytic response of supported gold catalysts in CO oxidation at 20 °C. Catalytic activity was found to increase with the Fe2O3 loading even though this increase was not linear: the highest catalytic activity was observed for the catalyst loaded with 15 wt.% Fe2O3. For the most active Au/S15–15Fe catalyst, this behavior is explained in terms of the largest Fe2O3 cluster dispersion on the surface of the SBA-15 substrate (by XRD), the highest surface exposure of the Au0 species (by XPS) and its large stability during on-stream reaction.  相似文献   

10.
TAP (temporal analysis of products) technique was used to clarify the controversial mechanism for low-temperature CO oxidation on supported Au catalysts involving unidentified moisture effects on the performances. The unique TAP transient technique, along the use of a specially prepared, highly active Au/Ti(OH) 4 * catalyst, provided the information and characterization of each elementary step involving weak and reversible CO adsorption, strong and molecular O2 adsorption, and their surface reaction, which are suppressed by the coexistence of water vapor.  相似文献   

11.
After a high-temperature reduction (HTR) at 773 K, TiO2-supported Au became very active for CO oxidation at 313 K and was an order of magnitude more active than SiO2-supported Au, whereas a low-temperature reduction (LTR) at 473 K produced a Au/TiO2 catalyst with very low activity. A HTR step followed by calcination at 673 K and a LTR step gave the most active Au/TiO2 catalyst of all, which was 100-fold more active at 313 K than a typical 2% Pd/Al2O3 catalyst and was stable above 400 K whereas a sharp decrease in activity occurred with the other Au/TiO2 (HTR) sample. With a feed of 5% CO, 5% O2 in He, almost 40% of the CO was converted at 313 K and essentially all the CO was oxidized at 413 K over the best Au/TiO2 catalyst at a space velocity of 333 h–1 based on CO + O2. Half the chloride in the Au precursor was retained in the Au/TiO2 (LTR) sample whereas only 16% was retained in the other three catalysts; this may be one reason for the low activity of the Au/TiO2 (LTR) sample. The reaction order on O2 was approximately 0.4 between 310 and 360 K, while that on CO varied from 0.2 to 0.6. The chemistry associated with this high activity is not yet known but is presently attributed to a synergistic interaction between gold and titania.  相似文献   

12.
Au/Mg(OH)2 catalysts with two different sizes (4 and 14 nm) of Au nanoparticles (NPs) have been prepared by depositing pre-fabricated Au NPs onto Mg(OH)2 nanosheets (NSs). It was found that 14 nm Au NPs supported on Mg(OH)2 exhibited unexpected activity for CO oxidation at ambient temperature that could be comparable with those of Au NPs of 4 nm. The Mg(OH)2 support was suggested to be responsible for the observed catalytic activity of larger gold supported catalysts.  相似文献   

13.
Methanobactin (Mb) is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III) to Au(0). In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w). The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles.  相似文献   

14.
Steam reforming of toluene as a model of aromatics was performed over various Ru/12SrO–7Al2O3 (S12A7) catalysts, and the effects of Ru precursor, calcination and pre-treatment conditions on the catalytic activity and durability of Ru/S12A7catalysts were investigated. The catalytic activity of prepared Ru/S12A7 catalysts exhibited higher than that of a commercial Ru/Al2O3 (RA), despite low Ru loading. The catalysts prepared by the physical mixing of Ru (PPh3)3Cl2 and S12A7 (PPH) had higher catalytic activities than the catalysts prepared by the impregnation with RuCl3 nH2O (CL). It is interesting that the N2 pre-treated PPH and CL catalysts especially had higher catalytic activities than the H2 pre-treated PPH and CL catalysts. In their catalysts, there was a linear relationship between the catalytic activity and the Ru dispersion estimated by CO chemisorption. The catalytic activity of the N2 pre-treated PPH catalyst has little decreased with time on stream, whereas the catalytic activities of the N2 pre-treated CL catalyst and H2 pre-treated PPH catalyst gradually decreased with time on stream.  相似文献   

15.
This paper concerns the preparation of metal oxide-supported gold catalysts and their application to 2-propanol abatement in order to lower the light off temperature. Catalytic oxidation of 2-propanol was investigated on Au/CeO2, Au/Fe2O3, Au/TiO2 and Au/Al2O3 catalysts prepared from the deposition–precipitation (DP) method. The catalysts are characterized by XRD (X-ray diffraction), BET (Brunner–Emmett–Teller), TEM (transmission electron microscopy), NH3-TPD (NH3-temperature programmed desorption), H2-TPR (H2-temperature programmed reduction), ICP-AES (inductively coupled plasma-atomic emission spectroscopy) and XPS (X-ray photoelectron spectroscopy) techniques. The catalytic activity of Au/metal oxide samples towards the deep oxidation of 2-propanol to CO2 and water has been found to be strongly dependent on the kind of supports, the amount of gold loading, the calcination temperature and the moisture content in the feed.  相似文献   

16.
A lamellar hydrocalumite-type [Ca2Al(OH)6]NO3·mH2O, (HC), was synthesized and characterized by X-ray diffraction analysis (XRD), surface area, pore size measurements, CO2-Thermal Programmed Desorption, and later tested as catalysts in the double bond isomerization of 1-butene. The layered structure of HC collapses above 523 K yielding an amorphous material at 573 K which upon calcination at 873–973 K transforms into a mixture of CaO and mayenite Ca12Al14O33. The calcination temperature has a marked effect in the formation of basic sites. Thus for example, HC calcined at 1073 K shows 90% of strong basic sites (CO2 desorption at 1023 K) while they are absent in HC calcined at 573–673 K. HC calcined at 973 K shows high catalytic activity (74% conversion) in the isomerization of 1-butene without any appreciable deactivation after 4 h on stream.  相似文献   

17.
Oxides and carbon are commonly used as supports for gold nanoparticles, but metal salts are barely considered as suitable supports. Our group recently communicated that gold nanoparticles supported on nanosized LaPO4 (6–8 nm) are active for CO oxidation (Yan et al., Angew Chem Int Ed 45:3614, 2006). In the current work, we systematically developed an array of Au/M–P–O catalysts and tested them for catalytic activity and stability. It was found that 200 °C-pretreated Au/M–P–O (M = Ca, Fe, Co, Y, La, Pr, Nd, Sm, Eu, Ho, Er) show high CO conversions below 50 °C, and 500 °C-pretreated Au/M–P–O (M = Ca, Y, La, Pr, Nd, Sm, Eu, Ho, Er) show high CO conversions below 100 °C. These samples were characterized by ICP-OES, BET, XRD, TEM, SEM, and H2-TPR. The stability of selected catalysts was studied as a function of time on stream. This work furnishes a new catalyst system for further fundamental and applied research.  相似文献   

18.
FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature   总被引:1,自引:0,他引:1  
Coprecipitated Au/Fe2O3 catalysts used for low-temperature catalytic oxidation of carbon monoxide have been studied by FT-IR spectroscopy of adsorbed CO. The FT-IR results have shown that after preparation and exposure to a CO/O2 mixture gold is present on the surface mainly as Au1+ and Au0 species. It has been found that in the CO oxidation Au1+ is more active and less stable than Au0. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The preparation of Au/ZnO and Au/Fe2O3 catalysts using two coprecipitation methods is investigated to determine the important factors that control the synthesis of high activity catalysts for the oxidation of carbon monoxide at ambient temperature. In particular, the factors involved in the preparation of catalysts that are active without the need for a calcination step are evaluated. The two preparation methods differ in the manner in which the pH is controlled during the precipitation, either constant pH throughout or variable pH in which the pH is raised from an initial low value to a defined end point. Non-calcined Au/ZnO catalysts prepared using both methods are very sensitive to pH and ageing time, and catalysts prepared at a maximum pH = 5 with a short ageing time (ca. 0–3 h) exhibit high activity. Catalysts prepared at higher pH give lower activity. However, all catalysts require a short operation period during which the oxidation activity increases. In contrast, the calcined catalysts are not particularly sensitive to the preparation conditions. Non-calcined Au/Fe2O3 catalysts exhibit high activity when prepared at pH ≥ 5. Calcined Au/Fe2O3 prepared using the controlled pH method retain high activity, whereas calcined catalysts prepared using the variable pH method are inactive. The study shows the immense sensitivity of the catalyst performance to the preparation methods. It is therefore not surprising that marked differences in the performance of supported Au catalysts for CO oxidation that are apparent in the extensive literature on this subject, particularly the effect of calcination, can be expected if the preparation parameters are not carefully controlled and reported.  相似文献   

20.
The bimetallic Au-M/Fe2O3 catalysts were prepared by deposition coprecipitation method with Au/M atomic ratio of 1. All the catalysts were measured for WGS reaction and characterized by TPR/TPO studies. Ruthenium- and nickel-modified catalysts showed higher WGS activities compared to the other systems including unmodified Au/Fe2O3 at low temperature (100 °C). At higher temperature (240 °C), ruthenium-, nickel-, bismuth-, lead-, copper-, silver-, thallium- and tin-modified catalysts were more active than unmodified Au/Fe2O3. Manganese- and cobalt-modified catalysts were less active than unmodified Au/Fe2O3. TPR analyses indicated a shift in reduction temperature in the bimetallic catalysts, suggesting a degree of interaction between gold and the second metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号