首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以反相悬浮聚合法可控制备了大粒径膨胀微球。研究了搅拌速度、分散剂用量、交联剂含量、偶氮二异丁腈(AIBN)协同引发剂对粒径及性能的影响。结果表明,转速恒定,分散剂用量越高,微球的粒径越小;分散剂浓度恒定,转速提高有利于微球的粒径大幅度减小;交联剂的用量对微球的尺寸影响不大。在矿化水中,微球的吸水率迅速下降,离子强度越大,下降幅度越大;随着微球的粒径变小,吸水率变大,当粒径在55μm左右时,最大吸水率达到极值;助引发剂AIBN的存在,能够显著降低粒径的大小。采用平均粒径为5μm的微球进行封堵试验,封堵率可达80%-90%。  相似文献   

2.
分散聚合法聚丙烯酰胺微球调剖剂的研究   总被引:1,自引:0,他引:1  
以过硫酸铵和亚硫酸氢钠为氧化还原引发剂,N,N-亚甲基双丙烯酰胺为交联剂,乙醇/去离子水为分散介质,聚乙烯吡咯烷酮(PVP)为分散剂,将丙烯酰胺和苯乙烯磺酸钠进行分散聚合制备了聚丙烯酰胺微球调剖剂,考察了乙醇/去离子水体积比、丙烯酰胺用量、引发剂用量、分散剂用量、交联剂用量、苯乙烯磺酸钠含量和反应温度对聚丙烯酰胺微球调剖剂的粒径和凝胶强度的影响。结果表明所合成的聚合物微球调剖剂粒径可调,平均粒径为1.0~8.5μm,具有较好的分散性和凝胶强度。FTIR谱图初步证实丙烯酰胺微球聚合物的结构。  相似文献   

3.
以乙醇水溶液为反应介质,聚乙烯吡咯烷酮(PVP)为分散剂,偶氮二异丁腈(AIBN)为引发剂,采用分散聚合法制备了粒径为4~9μm的单分散甲基丙烯酸缩水甘油酯/苯乙烯共聚物(P(GMA-St))微球。研究了分散聚合中单体配比及浓度、醇水比、分散剂及引发剂用量对微球粒径及粒径分布的影响。通过扫描电镜(SEM)和红外光谱(FTIR)对P(GMA-St)微球的表面形貌和化学结构进行了表征。  相似文献   

4.
以丙烯酰胺为单体,N,N—亚甲基二丙烯酰胺为交联剂,过硫酸钾为引发剂,水为分散相,环已烷为连续相,采用反相悬浮聚合法,合成交联聚丙烯酰胺微球,考察了不同油水相比,单体浓度,分散剂用量对粒径的影响;研究了引发剂用量,交联剂用量及不同粒径大小对吸水率和离子吸附的影响。  相似文献   

5.
以去氢枞酸丙烯酸乙二醇酯(DAEA)为单体,聚乙烯基吡咯烷酮(PVP)为分散剂,偶氮二异丁腈(AIBN)为引发剂,异丙醇/水(IPA/H_2O)为分散介质,利用分散聚合法制备了聚去氢枞酸丙烯酸乙二醇酯(PDAEA)微球;利用红外光谱、扫描电镜对聚合物结构和微球的粒径及形貌进行了表征。同时考察了分散剂、引发剂和单体浓度,醇水比及反应温度等因素对其粒径及其分散系数的影响。实验结果表明,PDAEA微球的粒径在1~3μm,粒径分布窄;PDAEA微球的粒径随分散剂用量的增加而减小;随单体和引发剂用量、醇水比的增加而增大,并随反应体系温度的升高而增大。  相似文献   

6.
利用对氨基偶氮苯与甲基丙烯酰氯反应合成了甲基丙烯酰胺基偶氮苯(MAAAB),以MAAAB为单体,偶氮二异丁腈(AIBN)为引发剂,聚乙烯基吡咯烷酮(PVP)为分散剂,乙醇/水为分散介质,利用分散聚合法制备了聚甲基丙烯酰氨基偶氮苯(PMAAAB)微球,同时考察了引发剂、分散剂浓度以及醇水比对微球形貌和粒径的影响。采用红外光谱、凝胶渗透色谱、扫描电镜、纳米粒度仪等对单体和聚合物的结构、微球形貌和粒径进行了表征和测试,并考察了PMAAAB微球的光响应性。结果表明,PMAAAB微球的粒径在0~2.0μm,粒径分布较窄;PMAAAB微球的粒径随分散剂用量、醇水比的增加而减小;引发剂用量增加,微球粒径增大;随着UV照射时间的延长,微球粒径变大,照射80 min后达到平衡;可见光作用下,微球粒径及其分布均减小,照射20 min后达到平衡;在紫外-可见光交替作用下,PMAAAB微球粒径表现出可逆的变化。  相似文献   

7.
采用分散聚合法,以苯乙烯为单体,二苯甲烷双马来酰亚胺(BDM)为交联剂,制备了单分散交联聚苯乙烯微球(St/BDM)。研究了分散聚合反应中单体(St)、引发剂(AIBN)、分散剂(PVP)、交联剂(BDM)用量对微球粒径和粒径分布的影响。通过优化反应条件,合成了平均粒径为3.03μm(ε=0.05)的单分散交联聚苯乙烯微球。热稳定性分析和耐溶剂性实验结果表明,二苯甲烷双马来酰亚胺(BDM)交联的聚苯乙烯微球热稳定性和耐溶剂性能比线性的聚苯乙烯微球有了很大的提高。当失重5%时,聚合物的热分解温度由交联前的306℃上升到交联后的328℃。  相似文献   

8.
用悬浮聚合法制备多孔和中空微球,悬浮体系的配方中包含单体、惰性溶剂、引发剂、交联剂和分散剂聚乙烯醇等。随着聚合的进行,聚合物分子量的增大,产生了相分离,得到多孔或中空结构;同时也讨论了交联剂和亲水性单体对聚合物微球形态的影响。用光学显微镜观察聚合物微球的形态并测量微球的尺寸。结果表明,多孔微球的粒径约为30μm,小孔的尺寸约为3μm;中空微球的粒径约为20μm,表面光滑并且有形状不规则的洞。  相似文献   

9.
采用乳液聚合法制备了单分散性聚甲基丙烯酸甲酯(PMMA)纳米微球,分析了聚合过程中不同单体滴加时间、不同表面活性剂用量、不同引发剂用量以及不同引发剂种类等因素对聚合体系中微球的粒径以及粒径分布的影响,研究表明,PMMA微球的粒径随单体滴加时间、表面活性剂用量、引发剂用量的增加而减小;采用AIBN引发剂制备的微球的粒径较采用KPS引发剂大。  相似文献   

10.
分散聚合法制备聚苯乙烯微球及其机理研究   总被引:1,自引:0,他引:1  
采用苯乙烯(St)为反应单体,偶氮二异丁腈(AIBN)为引发剂,聚乙烯基吡咯烷酮(PVP)为分散剂,无水乙醇和去离子水为分散介质,通过改变反应物质的浓度,制备出平均粒径为1.17、1.66、2.04、2.26、2.90和3.04μm,单分散性好的聚苯乙烯微球.并对其生长机理进行了深入探索,建立了生长模型,考察了引发剂半衰期在微球生长过程的影响,并证明了分散剂在微球表面是一种物理吸附作用.  相似文献   

11.
采用有机胺催化水解正硅酸乙酯生成SiO_2纳米粒子,经硅烷偶联剂改性后,获得了两亲性的SiO_2纳米粒子。以其作为Pickering乳化剂,成功制备了稳定的Pickering细乳液并合成了无机聚合物复合中空微球。通过红外光谱、透射电镜、扫描电镜和热重分析等测试手段对复合中空微球进行了表征。结果表明:引发剂为偶氮二异庚腈、交联剂用量为0.2%时合成了直径在1.5~2μm之间的复合中空微球。采用低温引发剂有利于合成均一粒径的中空微球;交联剂的用量能够改变微球的粒径大小;不同的单体类型会影响微球的粒径分布。  相似文献   

12.
采用反相悬浮聚合法,以聚乙二醇二丙烯酸酯(PEGDA)为交联剂,过硫酸钾(KPS)-亚硫酸氢钠(NaHSO3)为引发剂合成了吸水膨胀微球聚(丙烯酸钠-丙烯酰胺)(P(AA-AM))。研究了分散剂对反应体系稳定性和产品形态的影响以及单体配比、丙烯酸中和度、交联剂及引发剂用量对微球吸水率的影响。最佳条件下制备的吸水膨胀微球在去离子水中的吸水率为880g/g,在0.9%NaCl溶液中的吸液率为82g/g。  相似文献   

13.
以苯乙烯、二乙烯苯为单体,引入混合溶剂作为致孔剂,采用悬浮聚合的方法制备了多孔交联聚苯乙烯微球,并通过有机萃取等方法带出致孔剂,形成永久性大孔.分析了搅拌速度、分散剂用量、致孔剂等因素对微球粒径分布和孔比表面积的影响,研究了不同工艺条件下的微球形态.结果表明,转速在180r/min左右,分散剂质量分数在0.15%左右时,可以制得粒径范围为0.2~0.8mm的聚苯乙烯微球,且微球具有良好的粒径分布.采用石蜡/甲苯、石蜡/乙酸乙酯为致孔剂时,可以形成纳米级小孔,且当石蜡/甲苯用量为86%时,孔比表面积可达到33.07m2/g,并随着交联剂用量的增加而增大.  相似文献   

14.
采用一次性加入法和延迟滴加法两种不同的分散聚合方法制备了一系列单分散聚(丙烯酰胺-OO-衣康酸)(P(AM-co-IA))微球,反应以亲水性单体丙烯酰胺(AM)和衣康酸(IA)为原料,N,N’-亚甲基双丙烯酰胺(Bis-A)为交联剂,偶氮二异丁腈(AIBN)为引发剂,聚乙烯吡咯烷酮(PVP-K30)为分散剂,探讨了反应条件对微球粒径的影响及其吸水溶胀性能,结果表明,所得P(AM-CO-IA)微球的粒径随着IA比例的增加而增大,而随着分散剂、引发剂和交联剂用量的增加而减小;一次性加入法所得微球的吸水溶胀性能较差.而通过延迟滴加法制备得到的微球由于具有均匀的交联网络结构,因此溶胀性能较好,其最佳溶胀倍率为305.71%。  相似文献   

15.
以醋酸乙烯酯(VAc)为单体,二乙烯基苯(DVB)为交联剂,通过悬浮聚合制备了一系列不同粒径(0.1~0.5mm)的交联聚醋酸乙烯微球,经过醇解,制得了交联聚乙烯醇微球。研究发现,搅拌速度对微球粒径大小影响较大,重点考察了搅拌速度对平均粒径和粒径分布的影响,实验结果表明,随着转速的逐步提升,微球的平均粒径明显减小,粒径分布变窄。通过在聚合过程中引入适当的致孔剂,获得高比表面积的微球,最高可达494.1m2/g,探讨了致孔剂种类和交联剂用量对比表面积的影响。结果表明,当增加交联剂的用量或者加入与共聚物溶度参数相近的致孔剂时,微球的比表面积显著增大。  相似文献   

16.
以乙醇为助溶剂,在电解质NaCl存在下进行甲基丙烯酸甲酯的无皂乳液聚合。考察了助溶剂、电解质、引发剂及单体的用量时聚甲基丙烯酸甲酯微球粒往及其分布的影响.结果表明,仅加入乙醇,可以使聚合物微球的粒径有所提高。在一定条件下对微球粒径分布影响不大。同时加入乙醇及电解质,能显著提高微球的粒径,得到10μm~100/μm的聚合物微球,但却使其分布变宽。单体用量增加。微球粒径及分布增大,引发剂用量增加,微球粒径及分布也增大。  相似文献   

17.
以苯乙烯(St)为主单体,甲基丙烯酸环氧丙酯(GMA)为功能单体,聚乙烯吡咯烷酮(PVP)为分散剂,乙醇和水的混合物为反应介质,选用两性偶氮二(N-2-羧乙基-2-甲基丙脒)水合物(VA-057)为该体系的引发剂,分散聚合制备了单分散的聚(苯乙烯-甲基丙烯酸环氧丙酯)(PSG)高分子微球。考察了单体配比、引发剂及分散剂用量、醇水比等因素对高分子微球表面环氧基团浓度、粒径及单分散性的影响。研究表明,PSG微球粒径(6~9μm)和表面环氧基团浓度(2~4mmol/g)具有可控性。单体配比中GMA含量增加,PSG微球的表面环氧基团浓度和粒径均增大。乙醇/水介质中水含量增大或引发剂用量增多,粒径变大。分散剂用量增多,粒径变小。但引发剂浓度过高或单体St与GMA的质量比1时,会导致粒径分布变宽。  相似文献   

18.
以醋酸乙烯酯(VAc)为单体,二乙烯基苯(DVB)为交联剂,通过悬浮聚合制备了一系列不同粒径(0.1~0.5mm)的交联聚醋酸乙烯微球,经过醇解,制得了交联聚乙烯醇微球。研究发现,搅拌速度对微球粒径大小影响较大,重点考察了搅拌速度对平均粒径和粒径分布的影响,实验结果表明,随着转速的逐步提升,微球的平均粒径明显减小,粒径分布变窄。通过在聚合过程中引入适当的致孔剂,获得高比表面积的微球,最高可达494.1m2/g,探讨了致孔剂种类和交联剂用量对比表面积的影响。结果表明,当增加交联剂的用量或者加入与共聚物溶度参数相近的致孔剂时,微球的比表面积显著增大。  相似文献   

19.
以甲基丙烯酸甲酯为聚合单体、偶氮二异丁腈为引发剂,通过分散聚合方法在甲醇/水介质中制备了1~2μm的聚甲基丙烯酸甲酯(PMMA)微球,研究了4种高分子分散剂对微球粒径和均匀性的影响并探讨了其影响机制。通过傅里叶变换红外光谱仪和扫描电子显微镜对微球的化学组成和形貌进行了表征,结果表明,不同分散剂对微球尺寸及其分布有着显著影响,以聚乙烯醇(PVA)作分散剂时体系容易失稳,产生颗粒沉降,有小颗粒产生,微球平均粒径(Dn)为1.2μm、多分散系数(PDI)为0.045;以聚乙烯吡咯烷酮(PVP)作分散剂微球均一性较差,体系也会产生颗粒聚并沉降,Dn为1.45μm、PDI为0.105;以聚丙烯酸(PAA)作分散剂,得到均一性更差的微球,Dn为1.85μm、PDI为0.3;以聚乙二醇(PEG)为分散剂则能得到均匀的微球,Dn为1.15μm、PDI为0.041,微球粒径和多分散系数随着PEG相对分子质量的增大呈先减小后增大的趋势;粒径随PEG浓度增加呈先增大后减小趋势,在添加量超过20%后,粒径随浓度增加而减小,PDI随PEG浓度的变化趋势与粒径基本一致。  相似文献   

20.
单分散性微米级微球的合成EI   总被引:1,自引:0,他引:1  
研究了苯乙烯在乙醇/水介质中,以聚电解质聚丙烯酸为分散剂,偶氮二异丁腈为引发剂的分散聚合行为。考察了溶剂体系、分散剂用量、单体浓度、引发剂种类和用量、反应温度及时间诸因素对聚合反应及产物的影响。通过改变各种反应条件,采用分散聚合法,成功地合成出平均粒径2.1μm的单分散聚苯乙烯微球。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号