首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
利用深过冷快速凝固技术使Cu65Ni35合金获得了不同的过冷度,最大过冷度达到284 K。对快速凝固组织拍摄金相图片,系统研究了Cu65Ni35合金微观组织形貌特征及其演化规律。结果表明,Cu65Ni35合金在大过冷度范围和小过冷度范围内均出现了晶粒细化现象。对具有典型晶粒细化特征的Cu65Ni35合金组织进行电子背散射衍射(EBSD)检测,发现大过冷度组织和小过冷度组织具有完全不同的晶粒取向,小过冷度下的组织发生晶粒细化是由枝晶重熔碎断致使的,而大过冷度下的组织发生晶粒细化却是由应力诱导再结晶完成的。  相似文献   

2.
夏勇  沈厚发  刘华松  王璞  唐海燕  张家泉 《钢铁》2021,56(3):137-145
 为了实现对合金凝固过程中枝晶形态的定量表征、揭示凝固前沿溶质分布与过冷度对微观偏析的影响,进而实现对凝固枝晶间液相渗透率的量化研究,采用相场模型探讨了Fe-0.5%C合金凝固过程中的显微组织和特征参数,并引入分形维数和无量纲周长定量分析了枝晶形貌、微观偏析和其糊状区的渗透性。结果表明,分形维数和无量纲周长可用于定量描述枝晶形态的复杂性。当过冷度从20增加到27 K时,分形维数从1.28增加到 1.791,无量纲周长从2.39增加到12.6;随着过冷度的增加,枝晶中心轴和固/液界面的溶质浓度均增加,并且枝晶尖端的扩散层厚度减小,即枝晶之间的偏析率增大。此外,利用分形维数和无量纲周长作为凝固过程中枝晶曲折因子实现了凝固过程枝晶间糊状区渗透率的量化计算。其中,与分形维数相比,利用无量纲周长作为曲折因子估测的渗透率与试验结果更为吻合,其在不同过冷度下数值为1.36×10-15~1.75×10-13 m2。  相似文献   

3.
对急冷凝固镍基高温合金松散粉末热等静压成型合金中亚稳碳化物及其相间反应进行了研究.随着热处理温度的升高,粉末中合金元素的分布逐渐均匀化,但枝晶间MC能在较高的温度下保持稳定,使Ti和Zr在该处仍有较高含量.原始粉末中枝晶间主要分布着块状和花状的MC型碳化物,在预热处理过程中粉末枝晶间块状碳化物分解,发生M23C6和M6C的析出反应,而花状碳化物的成分及形貌则保持相对稳定.成型合金残余枝晶间分布的碳化物主要由块状M6C和MC及花状MC组成,形变再结晶可以促进枝晶间碳化物的溶解.   相似文献   

4.
分别以Co_(47.5)Cu_(47.5)Pb_5和Co_(42.5)Cu_(42.5)Pb_(15)三元偏晶合金作为母合金,采用单辊法急冷快速凝固制备Co-Cu-Pb三元难混溶合金颗粒,对颗粒的微观组织结构与尺寸进行观察与分析,并对不同结构颗粒的形成机制进行研究。结果表明:Co-Cu-Pb合金颗粒的直径为70~600μm,得到实心颗粒、空心颗粒及多层壳核结构3种不同结构的颗粒。Co-Cu-Pb合金颗粒发生包晶反应形成富Co(Cu)相的初生枝晶,富Pb相主要富集于枝晶间隙处。随辊面线速度从15 m/s增大到30 m/s,初生Co(Cu)相枝晶发生粗大枝晶→细小等轴晶的转变,合金颗粒的凝固组织显著细化,并且由于液态难混溶合金发生Marangoni运动,形成快速凝固多层壳核结构,最终获得均质化的Co-Cu-Pb合金凝固组织。  相似文献   

5.
研究了强磁场对Cu-25%Ag(质量分数)合金凝固组织的影响,分析了不同磁场条件对合金凝固组织的作用机理.研究发现,均恒磁场和梯度磁场对合金的凝固组织有重要影响,改变了富Cu枝晶形貌和尺寸,无磁场条件下初生富Cu枝晶分布不均匀,一次枝晶比较长且粗大,枝晶主要以柱状枝晶为主;在12T磁场条件下,富Cu枝晶分布比较均匀,一次枝晶变短、粗化,枝晶主要以胞状枝晶为主;在负梯度磁场条件下,富Cu枝晶分布不均匀,在试样下部,树枝晶减少,以小平面方式生长的粗大胞晶为主.通过实验研究表明,利用均恒强磁场控制Cu-Ag合金凝固组织,细化晶粒、减小偏析是具有可行性的.  相似文献   

6.
采用梯度热处理工艺制备了具有梯度组织结构的FGH96合金亚尺寸盘坯, 对盘坯存在的残留枝晶区组织进行了研究。结果表明, 残留枝晶区实质上是一种γ′相未完全再结晶的组织区, 其呈区域性不均匀的分布于盘芯部位。残留枝晶区的形成与粉末颗粒冷凝组织的遗传性及未充分变形再结晶密切相关, 通过采用合适的热加工和固溶热处理工艺可以消除这种组织不均匀性。  相似文献   

7.
采用扫描电镜、透射电镜及其附带的能谱仪和碳复型萃取技术等多种手段研究了不同Hf含量的FGH96合金粉末颗粒显微组织、枝晶间合金元素偏析和析出相.发现Hf含量可以改变粉末颗粒内部树枝晶、胞状长大晶和微晶凝固组织的比例,粉末的快速凝固组织形态主要取决于冷却速率和固液界面前沿温度梯度与长大速度的比值.不同Hf含量的FGH96合金粉末颗粒中,Nb、Ti、Zr和Al均富集于枝晶间,Co、Cr、W和Ni均富集于枝晶轴.当Hf质量分数为0.3%时,Ti、Nb、Zr、Hf等强碳化物形成元素的枝晶偏析程度最小.在快速凝固粉末颗粒中,Hf对氧含量比碳含量更敏感,优先形成更稳定的氧化物HfO2.   相似文献   

8.
采用Gleeble-3800热模拟试验机研究Fe-36Ni合金在900~1200℃的热塑性行为,并用FactSage软件、扫描电镜及透射电镜等研究该合金热塑性的影响因素及作用机理.结果表明:合金中主要形成Al2O3+Ti305+MnS复合夹杂,夹杂物颗粒尺寸集中分布在0.5μm以下.合金热塑性在900~1050℃受晶界滑移及动态再结晶共同影响.晶界上分布的纳米级别(<200nm)夹杂物有效钉扎晶界,抑制动态再结晶发生的同时减小晶界结合力.微米级别(>200nm)夹杂物则促进显微裂纹在晶界滑移过程中的形成和扩展,损害合金热塑性.当温度高于1050℃时,较高的变形温度使再结晶驱动力大于钉扎作用力,合金发生动态再结晶,有效提高热塑性.在1100~1200℃区间内,枝晶间裂纹的形成、晶界滑移的加剧及动态再结晶晶粒尺寸增大都降低合金热塑性.   相似文献   

9.
研究了UNS N10276合金大规格电渣重熔锭铸态组织、合金元素偏析行为以及合金中析出相的析出规律,并结合热力学计算系统分析了电渣重熔凝固组织及偏析的形成原因。研究结果表明,UNS N10276合金电渣锭具有典型枝晶组织,电渣锭头部的二次枝晶间距明显大于尾部。合金在凝固过程中,Mo、Mn、Si、C等元素富集于枝晶间,属于正偏析元素;Fe、W、Cr等元素富集于枝晶干,属于负偏析元素。Mo是偏析最严重的元素且在电渣锭头部偏析量最大。UNS N10276合金电渣锭中的主要析出相为枝晶间和沿晶界分布的大尺寸μ相和M6C碳化物相。Mo元素是析出相主要形成元素,且在电渣锭头部析出数量多,析出相尺寸大。因此,为改善UNS N10276合金冶金质量及其热加工性能,在成分设计和实际生产中应尽量减少Mo元素偏析,并尽可能地减少其析出相的形成。  相似文献   

10.
提出并采用合金熔体与枝晶间液体在液相线温度的密度差值用于预测单晶雀斑形成倾向。采用高速凝固工艺(HRS)及籽晶法制备一次枝晶取向为[001]的单晶高温合金试棒,统计了不同合金的雀斑平均总长度及一次枝晶间距,测量了不同合金的凝固温度区间及枝晶间区域成分,利用JMatPro软件计算母合金成分与枝晶间区域成分随温度变化的密度值。结果表明:不同成分单晶高温合金一次枝晶间距及合金凝固区间差别较大,一次枝晶间距与凝固温度范围与雀斑形成倾向不呈现线性关系;合金熔体(成分与母合金成分相同)与枝晶间液体(成分与枝晶间区域成分相同)在液相线温度的密度差与雀斑形成倾向呈较好的线性关系,采用该液相密度差值可以预判雀斑形成倾向大小。  相似文献   

11.
The growth of dendrites during the solidification of thin metallic films has been modeled using the phase-field method, with appropriate boundary conditions to take into account wetting effects. The model was applied to the growth of zinc dendrites during the solidification of hot-dipped coatings of steel, and the simulation results were compared to recent experimental observations of Strutzenberger and Faderl. It has been found that the presence of a boundary modifies the usual crystallographic growth directions of the dendrite arms as well as their growth velocity. In the case of hcp zinc dendrites in galvanized coatings, wetting effects at the boundary decrease the growth velocity as the inclination angle of the basal plane increases. This model also shows that shiny regions of the coating, characterized by a low density of lead particles and a smooth surface, result from the growth of the dendrite along the outer surface, while dimpled regions, characterized by a high density of lead particles and a rough surface, are due to the growth of the dendrite along the steel substrate.  相似文献   

12.
The accepted primary mechanism for causing macrosegregation in directional solidification (DS) is thermal and solutal convection in the liquid. This article demonstrates the effects of under-cooling and nucleation on macrosegregation and shows that undercooling, in some cases, can be the cause of end-to-end macrosegregation. Alloy ingots of Pb-Sn were directionally solidified upward and downward, with and without undercooling. A thermal gradient of about 5.1 K/cm and a cooling rate of 7.7 K/h were used. Crucibles of borosilicate glass, stainless steel with Cu bottoms, and fused silica were used. High undercoolings were achieved in the glass crucibles, and very low undercoolings were achieved in the steel/Cu crucible. During under-cooling, large, coarse Pb dendrites were found to be present. Large amounts of macrosegregation developed in the undercooled eutectic and hypoeutectic alloys. This segre-gation was found to be due to the nucleation and growth of primary Pb-rich dendrites, continued coarsening of Pb dendrites during undercooling of the interdendritic liquid, Sn enrichment of the liquid, and dendritic fragmentation and settling during and after recalescence. Eutectic ingots that solidified with no undercooling had no macrosegregation, because both Pb and Sn phases were effectively nucleated at the start of solidification, thus initiating the growth of solid of eutectic composition. It is thus shown that undercooling and single-phase nucleation can cause significant macrosegregation by increasing the amount of solute rejected into the liquid and by the movement of unattached dendrites and dendrite fragments, and that macrosegregation in excess of what would be expected due to diffusion transport is not necessarily caused by convection in the liquid.  相似文献   

13.
The rate of solidification of dilute tin-lead alloys has been measured as a function of the initial undercooling (up to 45°C) and the solute content (up to 2 wt pct lead). Solidified specimens were examined by metallography and X-ray diffraction to obtain information on the solidification process and the resulting grain structure. Over an intermediate range of undercoolings, it was found that dendrites grow in the tin-lead alloys as much as four times faster than in pure tin at the same undercooling. This result is inconsistent with any present theories for dendrite growth kinetics in binary alloys. At both lower and higher undercoolings there is no evidence for growth by simple extension of dendrites along the specimen, and solidification rate measurements made under these conditions are probably not indicative of normal dendrite growth kinetics. A. W. Urquhart and G. L. F. Powell were formerly at the Thayer School of Engineering.  相似文献   

14.
Spangle formation in galvanized sheet steel coatings   总被引:2,自引:0,他引:2  
Very large grains, termed “spangles,” are produced on galvanized sheet steel coatings when lead is added to the zinc bath. The spangles have been attributed to melt undercooling prior to solidification. The present results indicate this is not the case, undercooling being less than 1 °C. The spangle diameter is shown to be dependent on the alloy addition to the bath, large spangles being obtained with Bi and Sb as well as Pb. The spangle size is related to the surface tension of the alloying addition, the size decreasing as the melt vapor surface tension of the alloying element increases. It is proposed that spangles form dendritically from a nucleus in the melt. Alloy additions with low interfacial energies and very limited solid solubility are highly concentrated ahead of the dendrite tip. This decreases the tip radius and increases the dendrite velocity, producing large grains. The basal plane orientation of the samples varies between 17 and 80 deg with respect to the steel sheet surface, which is inconsistent with basal plane dendritic growth in Zn along (1010) directions. It is proposed that solute additions to the melt and growth in a thin liquid layer can modify the dendrite growth direction, accounting for the spangle orientation. On leave from Obafemi Awolowo University, lie Ife, Oyo State, Nigeria  相似文献   

15.

Grain refinement phenomena during the microstructural evolution upon nonequilibrium solidification of deeply undercooled Ni-20 at. pct Cu melts were systematically investigated. The dendrite growth in the bulk undercooled melts was captured by a high-speed camera. The first kind of grain refinement occurring in the low undercooling regimes was explained by a current grain refinement model. Besides, for the dendrite melting mechanism, the stress originating from the solidification contraction and thermal strain in the FMZ during rapid solidification could be a main mechanism causing the second kind of grain refinement above the critical undercooling. This internal stress led to the distortion and breakup of the primary dendrites and was semiquantitatively described by a corrected stress accumulation model. It was found that the stress-induced recrystallization could make the primary microstructures refine substantially after recalescence. A new method, i.e., rapidly quenching the deeply undercooled alloy melts before recalescence, was developed in the present work to produce crystalline alloys, which were still in the cold-worked state and, thus, had the driven force for recrystallization.

  相似文献   

16.
A detailed analysis of the microstructures produced in an autogenously welded single crystal of Fc−15Ni−15Cr was performed in order to investigate the relationship between growth crystallography and solidification behavior. Electron beam welds were made at various speeds on the (001) surface of single crystals in either the [100] or [110] directions. A geometrical analysis was carried out in order to relate the dendrite growth velocities in the three 〈100〉 directions to the weld velocities for the different crystallographic orientations examined. From this analysis, the preferred dendrite trunk directions were determined as a function of the solidification front orientation based upon a minimum velocity or minimum undercooling criterion. A thorough examination of the weld microstructures and a comparison with the geometrical relationships developed in this work permitted a three-dimensional reconstruction of the weld pool shape to be performed. In addition, the dendrite spacings were measured, and the variation in spacings as a function of growth velocity was compared with theoretical predictions. It was found that the range of velocities over which dendritic growth is expected agreed with the experimental findings, and, furthermore, the change in dendrite spacing with growth velocity varied as predicted by theory. These results clearly demonstrate the effect of crystallography on the micro-structural development during weld pool solidification. The results also show that the resultant microstructures and pool shapes can be explained by geometrical analysis in conjunction with existing solidification models. M. R{upappaz}, formerly Visiting Scientist with the Metals and Ceramics Division, Oak Ridge National Laboratory, is permanently affiliated with the Laboratoire de Métallurgie Physique, Ecole Polytechnique Fédérale de Lausanne  相似文献   

17.
18.
Coarsening within the mushy zone during continuous directional solidification experiments was studied on an Al-30 wt pct Cu alloy. High brilliance synchrotron X-radiation microscopy allowed images to be taken in-situ during solidification. Transient conditions were present during directional solidification. Under these conditions, solute-rich settling liquid flow affects the dendritic array and thus coarsening. Coarsening was studied by following the secondary dendrite arm spacing (SDAS) of a developing dendrite at different local solidification times according to the mush depth and instant interface velocity. Solute enrichment and liquid flow cause deceleration and acceleration of the solidification front, which in turn influences both the mush depth and local growth and coarsening due to variations in solutal gradients and thus local undercooling. In addition, spacing between neighboring dendrites (i.e., primary dendrite arm spacing), which determines permeability within the mushy zone, affects the development of high-order branches. This article is based on a presentation given at the International Symposium on Liquid Metal Processing and Casting (LMPC 2007), which occurred in September 2007 in Nancy, France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号