首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用一种新型载体支架来进行米根霉的固定化发酵研究。种子培养过程中,5h后孢子已全部吸附到支架上,种子培养时间为24h,生物量维持在6.8g/L以上;发酵过程中,在温度为33℃,摇床转速为180r/min,装液量为20%,支架数为3个,时间为48h,发酵过程中及时补加CaCO3的条件下,L(+)-乳酸平均浓度可达50.00g/L,转化率接近65.0%,产率可保持在1.0g/(L·h)以上。与游离发酵相比,固定化发酵乳酸浓度、转化率、产率分别提高了79%、250%和150%,发酵周期提前了24h,且能重复发酵7个批次。  相似文献   

2.
通过环境压力筛选获得了一株耐受30 g/L丙酸的产酸丙酸杆菌菌株(Propionibacterium acidipropionici WY320),降低了发酵过程中丙酸的反馈抑制作用,采用正交实验设计优化了发酵培养基. 结果表明,发酵培养基最适的玉米浆、酵母膏和(NH4)2SO4浓度分别为60, 10和7.5 g/L. 该条件下,摇瓶培养耐酸菌株的发酵周期为240 h,丙酸产量为49.35 g/L,较优化前提高72.98%,产率为0.21 g/(L×h); 5 L发酵罐培养的发酵周期为168 h,丙酸产量达51.96 g/L,产率为0.31 g/(L×h),较摇瓶培养提高47.62%,优于文献报道水平.  相似文献   

3.
解析固态基质木质素与漆酶产量间的关系是促进固态发酵漆酶产业化的基础。考察了木质素含量变化对固态基质可降解性、水分分布特征以及对硬毛粗毛盖孔菌固态发酵漆酶产量的影响。结果表明随着木质素减少,漆酶产量增加,木质素为130 mg/g时,漆酶产量达到161.5 U/g,是对照组的3.42倍,木质素进一步减少漆酶产量未显著增加;木质素减少有利于改善固态基质可降解性,增加微生物可利用水。木质素是影响硬毛粗毛盖孔菌固态发酵产漆酶的重要因素,建立碱预处理工艺改变固态基质木质素含量,是提高固态发酵漆酶产量的重要途径。  相似文献   

4.
分别以木薯酶解液和糖蜜处理液作为发酵碳源,在机械搅拌式发酵罐中生产细菌纤维素(BC).通过考察纤维素产量、活菌增殖、耗糖量以及溶氧率等参数研究添加0~0.8% (w/V)琼脂对BC产量的影响.结果表明,未添加琼脂时,木薯酶解液的BC产量为6.8 g/L,发酵效果优于糖蜜的4.8 g/L.添加琼脂可以显著提高BC产量.木薯发酵中,添加0.2%琼脂得到的最大BC产量为8.1 g/L,比未添加的增加了l9%;糖蜜发酵中,添加0.6%琼脂的最大产量为7.4 g/L,比未添加的增加了54%.  相似文献   

5.
陈强  董晋军  许国超  韩瑞枝  倪晔 《化工进展》2015,34(12):4214-4219
糖丁基梭菌Clostridium saccharobutylicum DSM 13864能利用多种糖类为底物发酵产丁醇。本文研究了该菌体细胞表面的理化特性,并以砖块作为细胞固定化材料进行丁醇发酵。采用细菌吸附有机溶剂(MATS)法证明糖丁基梭菌细胞表面有强烈的亲水性,并且等电点在pH值为3左右,这些特性有利于菌体与表面亲水多孔的砖块吸附。在60g/L葡萄糖发酵培养基中,以5~8目砖块作为固定化材料,流速为1.1L/min,发酵48h后,丁醇的浓度、得率和生产率分别达到11.02g/L、0.18g/g和0.23g/(L·h),相比悬浮细胞发酵分别提高了10.53%、5.88%和9.52%。结果表明:砖块作为一种固定化材料可有效提高糖丁基梭菌的发酵产丁醇水平。  相似文献   

6.
汽爆秸秆膜循环酶解耦合丙酮丁醇发酵   总被引:8,自引:0,他引:8  
利用新型的汽爆玉米秸秆膜循环酶解耦合发酵系统进行了丙酮丁醇发酵的研究,并对使用该系统所导致的丙酮丁醇梭菌(Clostridium acetobutylicum AS1.132)代谢的变化进行了讨论. 在稀释率为0.075 h-1的条件下,丁醇的产量为0.14 g/g (纤维素+半纤维素),最大丁醇产率达到0.31 g/(L×h),溶剂组成为丁醇:丙酮:乙醇65.3:24.3:10.4(体积比),纤维素和半纤维素的转化率分别为72%和80%,使用单位纤维素酶所产生的丁醇量为3.9 mg/IU,是分步水解批次发酵的1.5倍. 利用该系统使酶解和发酵分别在各自最适的条件下同时连续进行,减少了纤维素酶的用量,有效地解除了酶解产物对纤维素酶的抑制作用,并减轻了溶剂产物尤其是丁醇对微生物活性的影响,延长了发酵周期.  相似文献   

7.
以聚乙烯醇(PVA)丝为吸附材料的立体载体,固定化米根霉菌种As3.3462发酵生产乳酸。与游离发酵相比,摇瓶单批固定化发酵乳酸的最终质量浓度提高了25%,发酵时间缩短了33%。分别在摇瓶和鼓泡式反应器中进行了载体的稳定性研究,摇瓶中可稳定发酵10批次,平均转化率为65%,平均产率为1.1g/(L.h);1L鼓泡式生物反应器的放大实验中进行了9批半连续发酵实验,乳酸质量浓度最高达到55.68g/L,转化率69.60%。  相似文献   

8.
为获得能用于纤维素乙醇高效生产的基因重组菌株,文中针对能利用木质纤维素水解液的Klebsiella sp.WL1316,对其乙醇脱氢酶adh基因进行了克隆和同源过表达。成功构建adh-pET-28a-Klebsiella sp.WL1316重组菌株,通过对菌株发酵稻草水解液生产乙醇过程的监测确定该重组菌适宜的发酵时间为48 h。结果表明:进一步通过单因素和响应面试验获得菌株乙醇发酵生产的优化工艺参数为IPTG诱导浓度0.89 mmol/L,发酵起始pH值7.59,起始还原糖质量浓度60.60 g/L。在此优化工艺条件下进行验证实验,乙醇产量达(8.28±0.55)g/L,与模型的理论预测值较接近,说明建立的模型是切实可行的,并且,该乙醇产量为同等发酵条件下野生菌的2.26倍,说明adh基因的过表达促进了乙醇产量的显著提高。  相似文献   

9.
为避免渗透汽化膜原位分离过程中丁醇生产菌对膜的污染,对无机载体吸附固定Clostridium acetobutylicum XY16进行了研究,考察了多种无机载体对菌体的固定效率及其发酵产丁醇性能的影响.研究发现:在静电引力的作用下,携带正电荷的沸石对荷负电的菌体具有良好的吸附作用.在此基础上,对沸石载体进行负载阳离子改性,沸石负载铁离子改变了载体表面Zeta电位,可增强对菌体的固定效率,并提高发酵性能.当培养基中葡萄糖浓度为60 g?L?1时,添加Fe3+-沸石18%(W/V)进行批式发酵,总溶剂的转化率为0.31 g?g?1,对菌体的固定效率达到87%,比未改性沸石提高了22%,丁醇产量为13.5 g?L?1,总溶剂可达20 g?L?1,比沸石改性前分别提高了8%和11.1%.对该材料固载的细胞进行4次重复批式发酵,总溶剂的基质得率与游离细胞批式发酵结果类似.以上研究结果表明Fe3+-沸石对Clostridium acetobutylicum XY16具有较好的细胞固定效率,并对其生产性能具有一定的促进作用,适宜作为丁醇生产菌的吸附载体.  相似文献   

10.
建立纤维素酶固态发酵与生物预处理相耦合工艺。实验优化固态发酵条件,测定发酵基质结晶度及酶解糖化得率。结果表明3 g稻草粉为基质,0.5%淀粉为碳源,1%蛋白胨为氮源,0.5%芦丁,初始pH值为5,发酵14d,褐腐真菌Piptoporus betulinus产CMC酶活力达到76.46 U/g,滤纸酶活力达到7.75 U/g;酶解糖化阶段减少外源纤维素酶量36.05%;P.betulinus降解固态基质中的无定型纤维素,暴露结晶纤维素,提高发酵基质的酶解糖化得率184%。  相似文献   

11.
对实验室菌种进行筛选后,得到一株能利用纤维素水解液木糖发酵生产丁醇的菌株。研究发现,该菌株不仅能利用水解液中的葡萄糖,还可以利用水解液中的木糖。对菌种生长特性探索,批式发酵中碳源、氮源以及CaCO3等条件优化后,得到最佳种子培养时间为20~24 h,并确定了木糖浓度为20 g/L的纤维素水解液用于15 L发酵罐实验,在37 ℃静置培养84 h,丁醇产量10.95 g/L,总溶剂16.78 g/L(丙酮、乙醇、丁醇三者之和),木糖利用率达到70%以上,总溶剂转化率为39.4%。解决了纤维素水解液中木糖不能被利用而造成的经济损失问题。  相似文献   

12.
水葫芦生物降解动力学实验研究   总被引:1,自引:0,他引:1  
以富含纤维素的水葫芦粉末为发酵底物,经驯化的厌氧污泥为接种物,在中温条件下(34℃)进行了探索性实验。计算了序批式厌氧发酵过程的主要生物动力学参数。给出了发酵过程的比基质利用常数K=0.058d-1和基于底物投料量P(以VSS计,g/L)与接种污泥量X(以MLVSS计,g/L)的水解速率方程r=1.40P+20.07X-53.74。实验中测定所产生物气中最高甲烷含量为59%。  相似文献   

13.
采用六因素三水平正交实验对木醋杆菌Acetobacter xylinum HN001的培养基进行了优化,确定了最佳培养基组成为:葡萄糖30 g/L,蛋白胨7.5 g/L,酵母粉10 g/L,磷酸氢二钠7.5 g/L,柠檬酸0.5 g/L,pH 5.0,30℃。采用优化的培养基制备细菌纤维素,应用傅立叶红外光谱、热重分析和扫描电子显微镜对其结构和性能进行表征。红外光谱测试显示含有纤维素的特征吸收峰。热重分析结果表明细菌纤维素最大失重温度为319.06℃,热稳定性较好。扫描电镜观察到细菌纤维素的纳米网状结构。  相似文献   

14.
在实验室试管培养条件下优化了基因工程菌E.coli BL21(DE3)pET15b/K5发酵产可溶型非融合血管生长抑制因子Kringle 5的培养基和诱导表达条件。经菌体干重测定和SDS-PAGE检测,确定最佳培养基(g.L-1)为:胰蛋白胨10.0,酵母提取物5.0,NaCl 10.0,葡萄糖6.0,NH4Cl 2.6,NaH2PO45.0,Na2HPO46.0;优化的诱导表达条件为:诱导剂浓度0.01mmol.L-1,诱导时间6h,诱导温度37℃,摇床转速220r.min-1。在优化的培养基和诱导表达条件下,菌体干重为1.8g.L-1,Kringle 5表达量为360mg.L-1,占总蛋白含量的20%,与基础LB培养基相比,Krin-gle 5表达量提高了1.18倍。  相似文献   

15.
糖源对细菌纤维素产量的影响   总被引:5,自引:2,他引:5  
对不同糖源及糖浓度对细菌纤维素的影响进行了探讨,不同的糖源对纤维素的产量有较大的影响,其中以葡萄糖+果糖(1∶1 g/g)为唯一糖源时产量最高。当总糖浓度为40 g/L时,纤维素的产量接近最高点(2.55 g/L)。  相似文献   

16.
Bacterial cellulose (BC) was produced by using the waste from beer culture fermentation instead of a chemically defined medium. Static cultivation was superior to the shaking cultivation on the basis of the BC production. The amount of BC produced during 120 hrs of cultivation using the waste from beer fermentation broth (WBFB) by a static cultivation was 4.52 g/L on the dry weight basis and much higher than 0.45 g/L produced from a Buffered Schramm and Hestrin (BSH) chemically-defined medium. The addition of 1% industrial-grade glucose to WBCB increased the production of bacterial cellulose from 8.46 to 13.95 g/L after 336 hrs of cultivation. Water soluble oligosaccharide (WSOS), the by-product obtained during BC cultivation increased to 5.05 g/L at 192 hrs of cultivation and then decreased to 2.18 g/L at 336 hrs. This work was presented at 13 th YABEC symposium held at Seoul, Korea, October 20–22, 2007.  相似文献   

17.
通过确定大肠杆菌在产酸阶段葡萄糖的消耗与酸中和剂碳酸钠间的定量关系,建立了pH恒定补糖策略,能够使发酵液中葡萄糖浓度维持在稳定水平。与分批发酵相比,采用pH恒定补糖且维持葡萄糖浓度在较低的水平对丁二酸的积累是有利的。当采用pH恒定补糖并控制葡萄糖质量浓度在10g/L时,丁二酸最终质量浓度达到57.6 g/L,生产效率达到1.15 g/(L·h)。  相似文献   

18.
目的克隆碱性纤维素酶基因,构建酵母整合型表达质粒,在巴氏毕赤酵母中表达,并对重组菌的发酵工艺进行优化。方法应用PCR技术从嗜碱性芽孢杆菌ATCC21833中扩增碱性纤维素酶基因,克隆至酵母整合型表达载体pGAPZαA中,构建重组表达质粒pGAPZαA-ATCC21833,并转化至巴氏毕赤酵母GS115。通过单因素实验及正交实验,确定重组酵母的最佳发酵培养基。在20L发酵罐中进行高密度发酵,观察碳源对批式发酵的影响,并检测在4种流加方式(连续恒速流加、间歇匀速流加、间歇递减流加、维持底物浓度流加)下的菌体干重及发酵液中的酶活性。结果重组表达质粒pGAPZαA-ATCC21833经酶切及DNA测序证明构建正确,其基因序列与嗜碱性芽孢杆菌KSM-635的碱性纤维素酶基因序列一致。最佳发酵培养基组成为6%葡萄糖、2%硫酸铵、12g/L磷酸二氢钾。碳源浓度对于重组酵母菌体生长及产酶至关重要。SDS-PAGE表明表达产物的相对分子质量约为103000。维持底物浓度的流加方式可获得最高的菌体干重(29.8g/L)及酶活力(24U/ml)。结论已成功构建了表达碱性纤维素酶的巴氏毕赤酵母工程菌,并确定了维持底物浓度的流加方式为最佳发酵方式。  相似文献   

19.
介绍了以不同底物的丁醇发酵结果,阐述了在以55g/L葡萄糖与果糖(1∶4)混合糖模拟菊芋物料为底物的丁醇发酵过程中存在果糖利用及丁醇产量较低等问题,研究了基于葡萄糖与果糖不同混合比例(1∶2、2∶3、3∶2及3∶1)的丁醇发酵性能。研究结果说明了随着混合比例提高,发酵时间由76h缩短至48h,菌体最大生物量OD620由2.1提高至4.3,而当葡萄糖与果糖混合比例为1∶2时,发酵过程中菌体细胞对果糖代谢能力最佳,且终点残糖浓度仅为2.1g/L,果糖利用效率达到95.03%,丁醇及总溶剂产量分别达到9.7g/L与16.0g/L。  相似文献   

20.
比较了休哈塔假丝酵母NLP21、树干毕赤酵母NLP22、NLP23和NLP31,在30 g/L的木糖和混合糖(葡萄糖15 g/L+木糖15 g/L)发酵培养基上以及在培养基中氮源浓度降低到原来1/2和1/10时的发酵性能。结果表明,在30 g/L木糖发酵培养基上,NLP23和NLP31产乙醇质量浓度最高,分别为(11.14±0.13)和(11.15±0.08) g/L。在15 g/L葡萄糖+15 g/L木糖混合糖发酵培养基上,NLP31产乙醇质量浓度最高,为(10.91±0.12) g/L。当发酵培养基中氮源浓度降低到原来的1/2时,NLP23和NLP31产乙醇能力相当,但后者产木糖醇的量增大;当氮源质量浓度降低到原来的1/10时,NLP23和NLP31产乙醇能力随着发酵轮数的增加,逐渐下降,氮源浓度低,降低了乙醇的产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号