首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The codeposition of some elements with lead from fluoborate baths has been studied in order to obtain lead alloys with a low concentration of a second metal. The metals considered were As, Bi, Cu, Sb, Se, Sn and Te. The chemical analysis of alloys obtained in various electrolysis conditions permitted an investigation of the kinetic behaviour of the metals codeposited with lead. The results showed that only Bi, Sb, Se and Te attain a limiting value of discharge current density and that the codeposition is regular for all metals. SEM observation of the deposits revealed that Sb and Se have a marked influence on the crystal morphology while the remaining metals induce only minor modifications.  相似文献   

2.
The electrodeposition of cobalt-nickel alloys was carried out from Watts-type baths of composition 5–60gl−1 CoSO4 · 7H2O, 100–300gl−1 NiCl2 · 6H2O and 25gl−1 H3BO3 at a pH of 4.4. The cathodic polarization during electrodeposition and the alloy composition were greatly influenced by the concentrations of the depositable metal ions; whereas, the cathodic efficiency was only slightly affected. Under the examined conditions, the electrodeposition of the alloys belonged to the anomalous type. X-ray diffraction studies revealed that the alloys were deposited in the face-centred cubic structure and consisted of a mixture of the two phases α(Co) andβ(Ni). Sound, smooth and bright alloy deposits were obtained and their properties were improved by increasing the nickel content of the bath.  相似文献   

3.
Pb–Cu alloy coatings were electrodeposited on steel sheet cathodes from baths containing mixtures of lead nitrate, copper nitrate and sodium gluconate. Cathodic polarization, cathodic current efficiency and deposit composition were determined under different plating conditions. The results were consistent with the behaviour of a regular plating system with copper being the preferentially depositable metal. The lead (the less noble metal) content in the deposits increased with increase in current density and concentration of lead in the bath but decreased with increase in bath copper concentration. The structure and morphology of the as-deposited coatings were examined by X-ray, AES and SEM. The results showed that the deposits consist of a mixture of fine crystals of the two metals and the morphology of the deposits is mainly controlled by the composition of the deposit.  相似文献   

4.
The electrodeposition of cobalt-nickel alloys has been studied from ammoniacal single-complex baths containing 5–50 CoSo4·7H2O, 5–50 NiCl2·46H2O, 20–50 g dm?3 (NH4)2SO4 and 250–350 cm3 dm?3 NH4OH (20.5% solution). The effects of the plating current density and the concentrations of the bath constituents on the cathodic polarisation, current efficiency and composition of the alloy were investigated. A wide range of alloy compositions with a current efficiency of 60–80% could be obtained from the main baths examined. The alloy plating system interchanged between the normal and the anomalous types depending upon the plating current density and the concentration of NH+4 ion in the bath. Electron microscopic and X-ray diffraction studies proved that the structure of the electrodeposited alloy was controlled by the alloy composition.  相似文献   

5.
Thin films of cobalt–nickel alloys were galvanostatically deposited onto steel substrates from gluconate baths. Cathodic polarization curves were determined for the parent metals and Co–Ni alloy. The effects of bath composition, current density and temperature on cathodic current efficiency (CCE) and alloy composition were studied. The deposition of Co–Ni alloy is of anomalous type, in which the less noble metal (Co) is preferentially deposited. The CCE of codeposition is high and increases with increase in temperature and current density, but it decreases as the [Co2+]/[Ni2+] ratio in the bath increases. The percentage of Co in the deposit increases with increasing cathodic current density, temperature and increasing Co2+ ion concentration. The structure and surface morphology of the deposit were studied by XRD, ALSV and SEM. The results showed that the alloys consisted of a single solid solution phase with a hexagonal close packed structure.  相似文献   

6.
The electrodeposition of Cd–Ni alloys from some selected acetate baths has been investigated. The influences of the proportions of Ni2+ and Cd2+ ions in the bath, the operating current density and superimposed alternating current on the electrodeposited alloys have been examined. The study includes the effect of these variables on the cathodic polarization curves, current efficiency, chemical composition and surface morphology of the alloys. Under all conditions the electrodeposition process is of the anomalous type. An explanation of this phenomenon with the help of a comparison between the experimental and the calculated polarization curves is given. X-ray diffraction studies show that the nickel-rich alloys consist of Ni and (Cd–Ni) phases, while the cadmium-rich alloys contain Cd, (Cd–Ni) and Ni phases. The optimum bath composition and operating conditions for the electrodeposition of sound, smooth and bright Cd–Ni alloys have been identified.  相似文献   

7.
Pyrophosphate plating bath was found to be a good alternative to citrate bath for deposition of Ni-Mo amorphous alloys. The addition of wetting agents such as 2-butyne-1,4-diol and rokafenol N-10 to the pyrophosphate bath resulted in the removal of bumps, spheres and cracks from the Ni-Mo alloy surface. The plated alloy layers adhered well to Cu-Zn brass and steel, were of thickness from a fraction to tens of micrometers and the molybdenum content was independent of the distance from the support. An increase in the concentration of the molybdate ion in the bath leads to an increase in the amount of Mo in the alloys up to 33-35 at.% and to a decrease in the deposition rate. These changes and the influence of pH are discussed in the paper. The atom arrangement in the alloys changes from (2 2 0) preferred for pure-nickel deposition to (1 1 1) for content of Mo higher than 15 at.%. For 20 and more at.% of Mo the structure of the alloy is amorphous like. An analysis of SEM and STM micrographs obtained indicates that contrary to the Ni-W alloy the “amorphous” phase is made of circa 10-50 nm in diameter objects and not by long needles perpendicular to the substrate.  相似文献   

8.
Cobalt electrodeposited onto steel substrate was carried out from solutions containing cobalt sulfate, boric acid and sodium gluconate. The study dealt with the influence of bath composition, current density, pH and temperature on the potentiodynamic cathodic polarization curves, cathodic current efficiency, and throwing power, as well as the throwing index of these baths. The microhardness of cobalt electrodeposited from gluconate baths is generally high and higher than that of cobalt deposited under similar conditions from sulfate, chloride, bromide and acetate baths. The surface morphology of the as-deposited cobalt was investigated using scanning electron microscopy (SEM) while the structure was studied using X-ray diffraction analysis. Cyclic voltammetric, as well as current-transient, techniques recorded on a glassy carbon electrode suggested that the deposition of cobalt from gluconate bath occurs via a nucleation process under charge transfer control.  相似文献   

9.
An alkaline bath containing CoSO4 · 7H2O, ZnSO4 · 7H2O, Na2SO4 and NH2CH2COOH is proposed for the deposition of thin layers of Zn–Co alloys onto steel substrates. Electrodeposition was carried out at 0.216–1.080 A dm–2, pH 10 and 10–55 °C. The influence of bath composition, current density and temperature on galvanostatic cathodic polarization, cathodic current efficiency and alloy composition was studied. Different proportions of the two metals were obtained by using different deposition parameters, but at all Zn(II)/Co(II) ratios studied, preferential deposition of zinc occurred and anomalous codeposition took place. Increasing the bath temperature enhanced the cobalt content in the deposit. X-ray diffraction measurements indicated that the phase structure of the deposits was controlled by the applied current density. The Co5Zn21 phase was formed at low current density, while the CoZn13 phase was formed at high current density. The potentiodynamic dissolution of the coatings showed that they contained Zn–Co alloy of different content and structure.  相似文献   

10.
Electrodeposition of PbTe thin films from acidic nitrate baths   总被引:1,自引:0,他引:1  
Electrodeposition of PbTe thin films from an acidic nitric bath was systematically investigated to understand the kinetics and the effect of electrodeposition conditions on film composition, crystallographic structure, texture and grain size. The electroanalytical studies employed initially with a rotating disk electrode to investigate the kinetics associated with Te, Pb and PbTe electrodeposition. The results indicated that the PbTe thin films were obtained by the underpotential deposition (UPD) of Pb atoms onto the overpotentially deposited Te atoms on a substrate.Based on these studies, PbTe thin films were potentiostatically electrodeposited using e-beam evaporated gold thin films on silicon substrate to investigate the effect of various deposition conditions on film composition and microstructure. The data indicated that the microstructure, composition and preferred film growth orientation of PbTe thin films strongly depended on the applied potential and electrolyte concentration. At −0.12 V, the film was granular, dense, and preferentially oriented in the [1 0 0] direction. At potentials more negative than −0.15 V, the film was dendritic and preferentially oriented in the [2 1 1] direction. A smooth, dense and crystalline film with nearly stoichiometric composition was obtained at −0.12 V from a solution containing 0.01 M HTeO2+, 0.05 Pb2+ and 1 M HNO3.  相似文献   

11.
研究了不同电沉积锡一钴舍金光亮剂对光亮效果的影响,其中PEI(聚乙烯亚胺)和PEG(聚乙二醇)效果较好.通过XRF极化曲线和循环伏安等方法研究可知:PEI通过辅助配住作用控制钴的质量分数,加速锡电沉积及增强阴极极化得到枪黑色光亮镀层;而PEG通过吸附和加速锡沉积起光亮作用,两者复配,镀层光亮效果更好.  相似文献   

12.
We describe a method for preparation of crystalline silver telluride films by cathodic deposition from dimethyl sulfoxide (DMSO) solutions containing 0.1 M NaNO3, 5.0 mM AgNO3 and 3.5-7.0 mM TeCl4. X-ray diffraction data indicated that the deposited silver telluride films could be adjusted from Ag excess and stoichiometric monoclinic Ag2Te to hexagonal Ag7Te4 by increasing the concentration of TeCl4 in the electrolyte or lowering the deposition potential. The Ag2Te film is gray and the Ag7Te4 film is dark blue-gray and mirror like adhered strongly to the substrates. Scanning electron microscopy images show that Ag2Te films were formed with globular grains with average diameters of more than 1 μm. In contrast, Ag7Te4 film consists of triangles characteristic of a (1 1 1) single-crystal with a hexagonal structure in average sizes of about 0.4 μm. The X-ray photoelectron spectra (XPS) indicated that the binding energies deviation of Te3d in Ag7Te4 is less than that in Ag2Te, which is consistent with the apparent valences of Te in Ag2Te and Ag7Te4. Finally, the cathodic deposition reactions were studied by cyclic voltammetry.  相似文献   

13.
The electrodeposition of nickel-thallium alloy powder was investigated from acidic sulphate baths containing 0.0125 NiSO4·6H2O, 0.005–0.020 Tl Cl, 0.05–0.23 (NH4)2SO4, 0.1 H3BO3 and 0.07 mol l–1 Na2SO4 · 10H2O. The polarization curves, the percentage composition and the current efficiency of the electrodeposited alloy powders were determined as a function of the bath composition. In addition, some properties of the deposits were examined such as the surface morphology, the structure as revealed by X-ray diffraction analysis and the catalytic activity towards the decomposition of 0.4% H2O2 solution. The results indicate that the characteristics of the alloy deposition and the properties of the alloy powder are affected to different extents by the bath composition.  相似文献   

14.
The cathodic polarization, cathodic current efficiency of codeposition, composition and structure of Co–Cu alloy as a function of bath composition, current density and temperature were studied. Electrodeposition was carried out from solutions containing CuSO4 · 5H2O, CoSO4 · 7H2O, Na2SO4 and NH2CH2COOH. The cathodic current efficiency of codeposition (CCE) was high and it increased with increasing temperature and Cu2+ content in the bath, but it decreased with current density. The codeposition of Co–Cu alloys from these baths can be classified as regular. The Co content of the deposit increased with Co2+ content and current density and decreased with glycine concentration and temperature. The structure of the deposited alloys was characterized by anodic stripping and X-ray diffraction techniques. The data showed that the deposited alloys consisted of a single solid solution phase with a face-centred cubic (f.c.c.) structure.  相似文献   

15.
Electrochemical quartz crystal microbalance (EQCM) and rotating disk electrode (RDE) techniques were utilized to systematically investigate the electrodeposition of SbxTe1−x (0.1 < x < 0.8). In addition, the effect of applied potential and agitation were correlated to the film composition, crystal structure, and morphology. Although the film composition was independent of the agitation rate, the deposition rate, current efficiency, crystallinity and phase of SbxTe1−x were all strongly influenced by it. The deposition rate monotonically increased with increases in the rotation rate because of the faster diffusion rate of HTeO2+ ions to the cathode. Amorphous thin films were electrodeposited in the absence of agitation, whereas polycrystalline Sb2Te3 with elemental Sb and Te were co-deposited at a higher agitation independent of the applied deposition potential.  相似文献   

16.
Cobalt-nickel-thallium alloy powders were electrodeposited from dilute metal sulphate baths of composition: 0.007–0.0245 mol l–1 CoSO4·7H2O, 0.0245–0.007 mol l–1 NiSO4·6H2O, 0.001 mol l–1 TlCl, 0.5 mol l–1 (NH4)2SO4, 0.07 mol l–1 Na2SO4·10H2O and 0.4 mol l–1 H3BO3. The cathodic polarization curves were traced during electrodeposition and utilized in the discussion of a reaction mechanism for the electrolytic powder deposition. The alloy composition and the cathodic current efficiency were influenced to a great extent by the bath composition (I) and slightly by the deposition current density (II). Irrespective of variables (I) and (II), the electrodeposition of the alloy belonged to the anomalous type. The surface morphology and the catalytic activity, towards the decomposition of 0.4% H2O2 solution, of the as-deposited alloy powders were affected predominantly by the percentage of cobalt in the alloy. X-ray diffraction studies showed that the alloys consisted mainly of the face-centred cubic nickel phase either alone or with minor proportions of face-centred cubic cobalt phase and hexagonal close-packed -cobalt phase. The occurrence of the latter phases was observed only in the alloys with a higher cobalt percentage than nickel.  相似文献   

17.
Electrodeposition of zinc-nickel alloys from chloride solution   总被引:4,自引:0,他引:4  
Operating conditions for zinc and nickel codeposition from chloride baths were studied in order to obtain alloys containing up to 20% nickel. Satisfactory deposits were produced at 50°C using current densities ranging from 5 to 20 mA cm–2 and nickel to zinc ratios ranging from 6.8 to 37.5%.Under the conditions studied, an empirical relationship was deduced in order to calculate the nickel percentage in the deposit from baths of prefixed composition using a given current density. Deposits having a nickel concentration lower than 11% were found to comprise the and phases, while at higher nickel concentration (up to 20%), the alloys showed only the phase structure, with preferred orientation (442) and (600) and excellent microhardness and corrosion resistance properties.  相似文献   

18.
Tin electrodeposition in its initial stages in acid sulfate/gluconate baths was studied with varying tin and gluconate concentrations using potential-controlled electrochemical techniques. The deposit morphology was observed by scanning electron microscopy (SEM). A comparison with tin electrodeposition from acid sulfate baths in the absence of gluconate was also carried out. Use of a highly acidic bath leads to nonuniform deposits, even in the presence of gluconate; at pH 4 deposits are uniform, brilliant and suitable for finishing applications. Tin crystallites have a well defined morphology which depends on bath agitation conditions. In the absence of agitation, the crystallites have the same tetragonal shape as in a sulfate bath without gluconate.  相似文献   

19.
Electrodeposition of rhenium-nickel alloys from aqueous solutions   总被引:1,自引:0,他引:1  
A. Naor  E. Gileadi 《Electrochimica acta》2009,54(25):6028-2120
Rhenium-nickel alloys were deposited on copper substrates in a small three-electrode cell, under galvanostatic conditions. The bath solution consisted of ammonium perrhenate, citric acid and nickel sulfamate. The effects of bath composition and deposition time were studied. The Faradaic efficiency (FE) and partial deposition current densities were calculated based on mass gain and elemental analysis using energy dispersive spectroscopy. The surface morphology was characterized by scanning electron microscopy. The thickness of the coating was measured on metallographic cross-sections. The results are discussed with emphasis on routes to increase the Faradaic efficiency and rhenium content in the coating. A plausible mechanism for the electrodeposition of rhenium-nickel alloys is presented.  相似文献   

20.
The electrodeposition has been studied of nickel-cobalt-zinc alloys from a borate bath containing nickel sulphate (120–140 g dm–3), cobalt sulphate (30–46 g dm–3), zinc sulphate (144–168 g dm–3), boric acid (30 g dm–3) and ammonium chloride (2 g dm–3). The operating conditions were: current density, 2.0–5.0 A dm–2; temperature, 30–40°C and pH, 2.4 to 5.4. Light grey, semibright, stressed films have been obtained. However, the deposits consist partially of black powder when the concentration of the various components is increased. The brightness is found to increase with decreasing temperature and pH of the solution. The total cathode efficiency increases when the pH and temperature of the solution decrease, whereas at any particular pH and temperature it first decreases, reaches a minimum and then increases with increasing current density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号