共查询到14条相似文献,搜索用时 46 毫秒
1.
以山西大学的汉语框架语义知识库为实验语料,使用CRFsuite分类器对中文句子中谓词的语义角色标注同时进行识别和分类。CRFsuite分类器中使用一些简单有效的特征,后处理阶段采用简单的后处理规则对标注结果进行处理,最终在实验结果和实验效率上都有了显著性提高。 相似文献
2.
在给定目标词及其所属框架的条件下,汉语框架语义角色标注可以分为语义角色识别和角色分类两个步骤。该文将此任务通过IOB2标记策略形式化为词序列标注问题,以词为基本标注单元,采用条件随机场模型进行自动标注实验。先对语料使用清华大学的基本块自动分析器进行分析,提取出15个块层面的新特征,并将这些特征标记形式化到词序列上。以文献[20]已有的12个词层面特征以及15个块层面特征共同构成候选特征集,采用正交表方法来选择模型的最优特征模板。在与文献[20]相同的语料上,相同的3组2折交叉验证实验下,语义角色标注的总性能的F1-值比文献[20]的F1-值提高了近1%,且在显著水平0.05的t-检验下显著。实验结果表明: (1)基于词序列模型,新加入的15个块层面特征可以显著提高标注模型的性能,但这类特征主要对角色分类有显著作用,对角色识别作用不显著;(2) 基于词序列的标注模型显著好于以基本块为标注单元以及以句法成分为标注单元的标注模型。 相似文献
3.
4.
5.
近些年来,中文语义角色标注得到了大家的关注,不过大多是传统的基于句法树的系统,即对句法树上的节点进行语义角色识别和分类。该文提出了一种与传统方法不同的处理策略,我们称之为基于语义组块分析的语义角色标注。在新的方法中,语义角色标注的流程不再是传统的“句法分析——语义角色识别——语义角色分类”,而是一种简化的“语义组块识别——语义组块分类”流程。这一方法将汉语语义角色标注从一个节点的分类问题转化为序列标注问题,我们使用了条件随机域这一模型,取得了较好的结果。同时由于避开了句法分析这个阶段,使得语义角色标注摆脱了对句法分析的依赖,从而突破了汉语语法分析器的时间和性能限制。通过实验我们可以看出,新的方法可以取得较高的准确率,并且大大节省了分析的时间。通过对比,我们可以发现在自动切分和词性标注上的结果与在完全正确的切分和词性标注上的结果相比,还有较大差距。 相似文献
6.
语义知识库是自然语言处理的基础性工程,但现阶段语义知识库的构建,大部分工作基于人工.基于英语框架网络FrameNet,采用FrameNet的现有框架库作为汉语框架网络的框架库,通过FrameNet中现有标注英文例句训练一语义角色标注器,利用英汉双语平行语料,对英文语料进行语义角色标注并将其映射到中文句子上,从标注好的汉语句子中提取汉语词元和例句填充汉语框架,构建汉语词汇库和例句库,从而实现汉语语义框架网络的自动构造. 相似文献
7.
语义角色对自然语言的语义理解和分析有着重要的作用,其自动标注技术依赖良好的语义角色标注训练数据集。目前已有的大部分语义角色数据集在语义角色的标注上都不够精确甚至粗糙,不利于语义解析和知识抽取等任务。为了满足细粒度的语义分析,该文通过对实际语料的考察,提出了一种改进的汉语语义角色分类体系。在此基础上,以只有一个中枢语义角色的语料作为研究对象,提出了一种基于半自动方法的细粒度的汉语语义角色数据集构建方法,并构建了一个实用的语义角色数据集。截至目前,该工程一共完成了9 550条汉语语句的语义角色标注,其中含有9 423个中枢语义角色,29 142个主要周边语义角色,3 745个辅助周边语义角色,172条语句被进行了双重语义角色标注,以及104条语句被进行了不确定语义事件的语义角色标注。我们采用Bi-LSTM+CRF的基线模型在构建好的汉语语义角色数据集和公开的Chinese Proposition Bank数据集进行了关于主要周边语义角色的基准实验。实验表明,这两个语义角色数据集在主要周边语义角色自动识别方面存在差异,并且为提高主要周边语义角色的识别准确率提供了依据。 相似文献
8.
框架语义角色标注(Frame Semantic Role Labeling, FSRL)是基于FrameNet标注体系的语义分析任务。语义角色标注通常对句法有很强的依赖性,目前的语义角色标注模型大多基于双向长短时记忆网络Bi-LSTM,虽然可以获取句子中的长距离依赖信息,但无法很好地获取句子中的句法信息。因此,引入Self-Attention机制来捕获句子中每个词的句法信息。实验结果表明,该模型在CFN(Chinese FrameNet,汉语框架网)数据集上的F1值得到了提升,证明了融入self-attention机制可以改进汉语框架语义角色标注模型的性能。 相似文献
9.
10.
汉语框架语义角色标注对汉语框架语义分析具有重要作用。目前汉语框架语义角色标注任务主要针对动词框架,但是汉语没有丰富的形态变化,很多语法意义都是通过虚词来表现的,其中副词研究是现代汉语虚词研究的重要部分,因此该文从副词角度出发构建了汉语副词框架及数据集,且对框架下的词元按照语义强弱进行了等级划分。目前的语义角色标注模型大多基于BiLSTM网络模型,该模型虽然可以很好地获取全局信息,但容易忽略句子局部特征,且无法并行训练。针对上述问题,该文提出了基于BERT特征融合与膨胀卷积的语义角色标注模型,该模型包括四层:BERT层用于表达句子的丰富语义信息,Attention层对BERT获取的每一层信息进行动态权重融合,膨胀卷积(IDCNN)层进行特征提取,CRF层修正预测标签。该模型在三个副词框架数据集上表现良好,F1值均达到了82%以上。此外,将该模型应用于CFN数据集上,F1值达到88.29%,较基线模型提升了4%以上。 相似文献
11.
汉语框架语义角色识别是汉语框架语义分析的重要任务之一。该文基于汉语词语、词性等特征的分布式表示,使用一种多特征融合的神经网络结构来构建汉语框架语义角色识别模型。鉴于可用的训练语料规模有限,该文采用了Dropout正则化技术来改进神经网络的训练过程。实验结果表明,Dropout正则化的加入有效地缓解了模型的过拟合现象,使得模型的F值有了近7%的提高。该文进一步优化了学习率以及分布式表示的初始值,最终的汉语框架语义角色识别的F值达到70.54%,较原有的最优结果提升2%左右。 相似文献
12.
语义角色除了受句法结构限制之外,同词汇的语义特征也有着紧密的内在联系。对于一些仅依靠句法分析不能很好解决的角色标注问题,如句法结构相同的两个成分所对应的角色分别为完全不同的施事、受事角色的情况,可以通过引入一些词汇语义特征来进行处理。该文基于北京大学的语义词典CSD,引入了配价数、主客体语义类等词汇语义特征来进行语义角色标注研究。10折交叉验证的结果显示,通过引用词汇语义特征,所有角色标注的总体评价F值比单纯使用句法特征上升了1.11%,而其中Arg0和Arg1角色标注的F值达到93.85%和90.60%,比仅使用句法特征进行角色标注分别提高了1.10%和1.26%。 相似文献
13.
中文语义角色标注的特征工程 总被引:3,自引:2,他引:3
基于统计机器学习的语义角色标注在自然语言处理领域越来越受到重视,丰富多样的特征直接决定语义角色标注系统的性能。本文针对中文的特点,在英文语义角色标注特征的基础上,提出了一些更有效的新特征和组合特征: 例如,句法成分后一个词、谓语动词和短语类型的组合、谓语动词类别信息和路径的组合等,并在Chinese Proposition Bank(CPB)语料数据上,使用最大熵分类器进行了实验,系统F-Score由89.76%增加到91.31%。结果表明,这些新特征和组合特征显著提高了系统的性能。因此,目前进行语义角色标注应集中精力寻找丰富有效的特征。 相似文献