首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To clarify the origin of defective mismatch repair (MMR) in sporadic endometrial cancers with microsatellite instability (MSI), a thorough mutation analysis was performed on the human mismatch repair gene MSH3. METHODS: Twenty-eight MSI-positive endometrial cancers were investigated for mutations in the human mismatch repair gene MSH3 using single-strand conformation variant (SSCV) analysis of all 24 exons. All variants were sequenced. Loss of heterozygosity was investigated at all MSH3 polymorphisms discovered. A subset of tumors were investigated for methylation of the 5' promoter region of MSH3 using Southern blot hybridization. RESULTS: An identical single-base deletion (delta A) predicted to result in a truncated proteins was discovered in six tumors (21.4%). This deletion occurs in a string of eight consecutive adenosine residues (A8). Because simple repeat sequences are unstable in cells with defective MMR, the observed mutation may be an effect, rather than a cause, of MSI. Evidence of inactivation of the second MSH3 allele in tumors with the delta A mutation would strongly support a causal role for these MSH3 mutations. However, there was no evidence of a second mutation, loss of sequences, or methylation of the promoter region in any of the tumors with the delta A mutation. CONCLUSION: Although the delta A mutation is a frequent event in sporadic MSI-positive endometrial cancers, it may not be causally associated with defective DNA MMR.  相似文献   

2.
We examined the stability of microsatellites of different repeat unit lengths in Saccharomyces cerevisiae strains deficient in DNA mismatch repair. The msh2 and msh3 mutations destabilized microsatellites with repeat units of 1, 2, 4, 5, and 8 bp; a poly(G) tract of 18 bp was destabilized several thousand-fold by the msh2 mutation and about 100-fold by msh3. The msh6 mutations destabilized microsatellites with repeat units of 1 and 2 bp but had no effect on microsatellites with larger repeats. These results argue that coding sequences containing repetitive DNA tracts will be preferred target sites for mutations in human tumors with mismatch repair defects. We find that the DNA mismatch repair genes destabilize microsatellites with repeat units from 1 to 13 bp but have no effect on the stability of minisatellites with repeat units of 16 or 20 bp. Our data also suggest that displaced loops on the nascent strand, resulting from DNA polymerase slippage, are repaired differently than loops on the template strand.  相似文献   

3.
Deletion and insertion mutations have been found to be a major component of the in vivo somatic mutation spectrum in the hypoxanthine phosphoribosyltransferase (hprt) gene of T-lymphocytes. In a population of 172 healthy people (average age, 34; mutant frequency, 10.3 x 10(-6)), deletion/insertion mutations constituted 41% (89) of the 217 independent mutations, the remainder being base substitutions. Mutations were identified by multiplex PCR assay of genomic DNA for exon regions, by sequencing cDNA, or sequencing genomic DNA. The deletion and insertion mutations were divided among +/- 1 to 2 basepair (bp) frameshifts (14%, 30), small deletions and insertions of 3-200 bps (13%, 28), large deletions of one or more exons (12%, 27), and complex events (2%, 4). Frameshift mutations were dominated by -1 bp deletions (21 of 30). Exon 3 contained five frameshift mutations in the run of 6 Gs, the only site in the coding region with multiple frameshift mutations, possibly caused by strand dislocation during replication. Both endpoints were sequenced for 23 of the 28 small deletions/insertions including two tandem duplication events in exon 6. More small deletions (8/28), possibly mediated by trinucleotide repeats, occurred in exon 2 than in the other exons. Large deletions included total gene deletions (6), exon 2 + 3 deletions (4), and loss of multiple (9) and single exons (8) in genomic DNA. The diverse mutation spectrum indicates that multiple mechanisms operated at many different sequences and provides a resource for examination of deletion mutation.  相似文献   

4.
5.
We have discovered a useful new reagent for mutation detection, a novel nuclease CEL I from celery. It is specific for DNA distortions and mismatches from pH 6 to 9. Incision is on the 3'-side of the mismatch site in one of the two DNA strands in a heteroduplex. CEL I-like nucleases are found in many plants. We report here that a simple method of enzyme mutation detection using CEL I can efficiently identify mutations and polymorphisms. To illustrate the efficacy of this approach, the exons of the BRCA1 gene were amplified by PCR using primers 5'-labeled with fluorescent dyes of two colors. The PCR products were annealed to form heteroduplexes and subjected to CEL I incision. In GeneScan analyses with a PE Applied Biosystems automated DNA sequencer, two independent incision events, one in each strand, produce truncated fragments of two colors that complement each other to confirm the position of the mismatch. CEL I can detect 100% of the sequence variants present, including deletions, insertions and missense alterations. Our results indicate that CEL I mutation detection is a highly sensitive method for detecting both polymorphisms and disease-causing mutations in DNA fragments as long as 1120 bp in length.  相似文献   

6.
Misalignment of repeated sequences during DNA replication can lead to deletions or duplications in genomic DNA. In Escherichia coli, such genetic rearrangements can occur at high frequencies, independent of the RecA-homologous recombination protein, and are sometimes associated with sister chromosome exchange (SCE). Two mechanisms for RecA-independent genetic rearrangements have been proposed: simple replication misalignment of the nascent strand and its template and SCE-associated misalignment involving both nascent strands. We examined the influence of the 3' exonuclease of DNA polymerase III and exonuclease I on deletion via these mechanisms in vivo. Because mutations in these exonucleases stimulate tandem repeat deletion, we conclude that displaced 3' ends are a common intermediate in both mechanisms of slipped misalignments. Our results also confirm the notion that two distinct mechanisms contribute to slipped misalignments: simple replication misalignment events are sensitive to DNA polymerase III exonuclease, whereas SCE-associated events are sensitive to exonuclease I. If heterologies are present between repeated sequences, the mismatch repair system dependent on MutS and MutH aborts potential deletion events via both mechanisms. Our results suggest that simple slipped misalignment and SCE-associated misalignment intermediates are similarly susceptible to destruction by the mismatch repair system.  相似文献   

7.
Mutations disrupting the function or production of C1 inhibitor cause the disease hereditary angioneurotic edema. Patient mutations identified an imperfect inverted repeat sequence that was postulated to play a mechanistic role in the mutations. To test this hypothesis, the inverted repeat was cloned into the chloramphenicol acetyltransferase gene in pBR325 and its mutation rate was studied in four bacterial strains. These strains were selected to assay the effects of recombination and superhelical tension on mutation frequency. Mutations that revert bacteria to chloramphenicol resistance (Cmr) were scored. Both pairs of isogenic strains had reversion frequencies of approximately 10(-8). These rare reversion events in bacteria were most often a frameshift that involved the imperfect inverted repeat with a deletion or a tandem duplication, an event very similar to the human mutations. Increased DNA superhelical tension, which would be expected to enhance cruciform extrusion, did not accentuate mutagenesis. This finding suggests that the imperfect inverted repeat may form a stem-loop structure in the single-stranded DNA created by the duplex DNA melting prior to replication. Models explaining the slippage can be drawn using the lagging strand of the replication fork. In this model, the formation of a stem-loop structure is responsible for bringing the end of the deletion or duplication into close proximity.  相似文献   

8.
Recent studies have suggested that different mutation types within the core domain of the tumour suppressor protein p53, i.e. DNA contact mutations and structural mutations, confer different biological properties. We have analysed in 86 head and neck squamous cell carcinomas (HNSCC), whether these p53 mutation types have a differential clinical impact. Thirty-seven missense mutations were identified. Thirteen of these (36%) were DNA contact mutations, occurring in the L3 loop, in the H2 loop sheet helix motif, in the S10 beta strand and in Zinc binding residues. Microsatellite marker analysis revealed a selective association between these mutations and the loss of wild-type alleles (100% LOH vs 50% LOH in tumours with structural mutations; P=0.0034, Fisher's exact, 2-tailed). In comparison to structural mutations or to the absence of mutations in the core domain, DNA contact mutations were associated with higher tumour stages (84.6% vs 62%), a higher incidence of lymph node metastasis (91.7% vs 56%; P=0.014, Fisher's exact, 2-tailed), a shortened recurrence-free survival (8.1 months vs 23.7 months, P=0.047, log rank test) and overall survival (11 months vs 29.2 months; P=0.003, log rank test). The latter was also the case when only stage IV tumours were analysed (P=0.0055, log rank test). These data indicate that in HNSCC, TP53 DNA contact mutations confer a strong selection pressure to eliminate wild-type alleles, and that they result in an accelerated tumour progression and reduced therapeutic responsiveness.  相似文献   

9.
The gemistocytic astrocytoma is a histological variant of diffuse astrocytomas and is characterised by the presence of large, GFAP-expressing neoplastic astrocytes (gemistocytes) and a tendency towards rapid progression to glioblastoma. In this study, we analyzed 28 gemistocytic astrocytomas (mean fraction of gemistocytes, 35.0+/-9.9%) for mutations in the p53 and PTEN (MMAC1) tumour suppressor genes. Single strand conformation polymorphism (SSCP), followed by direct DNA sequencing of p53 exons 5-8, revealed a mutation in 23 of 28 (82%) cases. Regional analysis of four tumours revealed identical p53 mutations in gemistocytic and fibrillary tumour areas. In contrast, none of 15 gemistocytic astrocytomas (WHO Grade II) and only two of 11 (18%) anaplastic gemistocytic astrocytomas (WHO Grade III) contained a PTEN mutation. Of these, one was a 1 bp deletion in codon 345 and the other a 1 bp insertion in intron 4. Differential PCR did not reveal homozygous PTEN deletion in any of the tumours analysed. These results indicate that p53 mutations are a genetic hallmark of gemistocytic astrocytomas, whilst PTEN mutations are absent in low-grade and rare in anaplastic gemistocytic astrocytomas.  相似文献   

10.
DNA mismatch repair plays a key role in the maintenance of genetic fidelity. Mutations in the human mismatch repair genes hMSH2, hMLH1, hPMS1, and hPMS2 are associated with hereditary nonpolyposis colorectal cancer. The proliferating cell nuclear antigen (PCNA) is essential for DNA replication, where it acts as a processivity factor. Here, we identify a point mutation, pol30-104, in the Saccharomyces cerevisiae POL30 gene encoding PCNA that increases the rate of instability of simple repetitive DNA sequences and raises the rate of spontaneous forward mutation. Epistasis analyses with mutations in mismatch repair genes MSH2, MLH1, and PMS1 suggest that the pol30-104 mutation impairs MSH2/MLH1/PMS1-dependent mismatch repair, consistent with the hypothesis that PCNA functions in mismatch repair. MSH2 functions in mismatch repair with either MSH3 or MSH6, and the MSH2-MSH3 and MSH2-MSH6 heterodimers have a role in the recognition of DNA mismatches. Consistent with the genetic data, we find specific interaction of PCNA with the MSH2-MSH3 heterodimer.  相似文献   

11.
BACKGROUND: Mutations of the transforming growth factor-beta type II receptor gene (TGF-beta RII) have been found in several replication error-positive sporadic colorectal carcinomas and hereditary nonpolyposis colorectal carcinoma cell lines. The aim of this study was to clarify the role of TGF-beta RII in sporadic colorectal carcinogenesis. METHODS: The authors screened for mutations at simple repeated sequences in the TGF-beta RII gene by polymerase chain reaction-single strand conformation polymorphism. They also examined genomic instability, using five microsatellite DNA markers in 69 sporadic colorectal carcinomas. When the carcinomas exhibited the TGF-beta RII mutations, the authors screened further for mutations in two DNA mismatch repair genes, hMSH2 and hMLH1. RESULTS: Seven of the 69 cancers (10%) showed one or two A deletions in TGF-beta RII and resultant frameshift mutations in nucleotide positions 709-718 containing a (A) 10 repeated sequence; but none of these appeared in the corresponding normal DNA, indicating a somatic mutation. All of the seven cancers were located in the proximal colon; there were none in the distal colon (P < 0.01). On the other hand, 22 of the 69 carcinomas (32%) showed the replication error-positive phenotype. The frequency of replication errors in proximal colon carcinomas was higher than that in distal colon carcinomas (P < 0.05). All 7 cancers with TGF-beta RII mutations showed replication errors. One of them revealed a nonsense mutation at codon 413, and 1 revealed a loss of heterozygosity in hMSH2. CONCLUSIONS: These data indicate that mutations of TGF-beta RII are strongly related to proximal colon carcinomas with microsatellite instability and that the mechanism of carcinogenesis in some proximal colon carcinomas is similar to that in hereditary nonpolyposis colorectal carcinoma.  相似文献   

12.
Mutation in the mismatch repair gene Msh6 causes cancer susceptibility   总被引:3,自引:0,他引:3  
Mice carrying a null mutation in the mismatch repair gene Msh6 were generated by gene targeting. Cells that were homozygous for the mutation did not produce any detectable MSH6 protein, and extracts prepared from these cells were defective for repair of single nucleotide mismatches. Repair of 1, 2, and 4 nucleotide insertion/deletion mismatches was unaffected. Mice that were homozygous for the mutation had a reduced life span. The mice developed a spectrum of tumors, the most predominant of which were gastrointestinal tumors and B- as well as T-cell lymphomas. The tumors did not show any microsatellite instability. We conclude that MSH6 mutations, like those in some other members of the family of mismatch repair genes, lead to cancer susceptibility, and germline mutations in this gene may be associated with a cancer predisposition syndrome that does not show microsatellite instability.  相似文献   

13.
The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3-10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3-10 reversion rate, whereas the hom3-10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.  相似文献   

14.
Studies on frequency and distribution pattern of TSH receptor (TSHR) and Gs alpha protein (gsp) mutations in toxic thyroid nodules (TTNs) reported conflicting results, most likely also related to the different screening methods applied and the investigation of only part of exon 10 of the TSHR. Therefore, we screened a consecutive series of 31 TTNs for both TSHR and gsp mutations by direct sequencing of exon 9 and the entire exon 10 of the TSHR gene and exons 7-10 of the gsp gene. Somatic TSHR mutations were identified in 15 of 31 TTNs. TSHR mutations were localized in the third intracellular loop (Asp619Gly and Ala623Val), the sixth transmembrane segment (Phe631Leu and Thr632Ile, Asp633Glu) and the second extracellular loop (Ile568Thr). One mutation was found in the extracellular TSHR domain (Ser281Asn). Two new TSHR mutations were identified. One involves codon 656 in the third extracellular loop (Val656Phe). The other new mutation is a 27-bp deletion in the third intracellular loop resulting in deletion of 9 amino acids at codons 613-621. Transient expression of the new TSHR mutations in COS-7 cells demonstrated their constitutive activity. No mutation was found in exons 7-10 of the gsp gene. This finding was confirmed by an allele-specific PCR for mutations in gsp codons 201 (Arg-->His, Cys) and 227 (Gln-->His, Arg). Our data indicate that constitutively activating TSHR mutations can be found in 48% of TTNs and thus currently represent the most frequent molecular mechanism known in the etiopathogenesis of TTNs. Moreover, the absence of gsp mutations in our series argues for an only minor role of these mutations in TTNs. Constitutive activation of the TSHR by a deletion in a region that might be involved in G protein coupling of the TSHR offers new insights into TSHR activation.  相似文献   

15.
Translationally silent mutations, which are not antigen selected, of human VH6 Ig gene rearrangements isolated from human spleen were analyzed for bias to gain insight into intrinsic features of the mutation process. Sixty-three clones representing 38 VH6DJ rearrangements had an overall mutation frequency of 4.5%, a replacement/silent (R/S) mutation ratio of 2.1 and 167 unique silent mutations. The silent mutations showed bias in: (i) targeting to CDR1 and CDR2, (ii) an increased frequency of mutations of A compared to T nucleotide bases on the coding strand, and (iii) an increased frequency of transitions versus transversions. Bias of C-->G over C-->A, of G-->C over G-->T and of A-->C over A-->T transversions was also present. Hot spots of mutation were observed, some which corresponded to potential sites of stem-loop formation. The results suggest that the somatic mutation process in man may be targeted to the complementarity determining region for some V genes, exhibits specific base substitutions favoring transitions and specific types of transversions, and may be occurring on only one DNA strand.  相似文献   

16.
To investigate the molecular basis of altered expression of the H-cadherin gene, we used polymerase chain reaction-single strand conformation polymorphism and DNA sequencing to examine the H-cadherin gene in 48 primary breast cancers in which loss of the long arm of chromosome 16 had been detected. We identified no mutations other than somatic 5-bp deletion within the coding region in a single tumor. The very low frequency of mutation found in these experiments suggests that H-cadherin is usually not a primary target for carcinogenesis in human breast cancers, and that reduction of its expression is likely to be a consequence of some other genetic event(s).  相似文献   

17.
The human DNA mismatch repair genes hMSH2 and hMSH6 encode the proteins that, together, bind to mismatches to initiate repair of replication errors. Human tumor cells containing mutations in these genes have strongly elevated mutation rates in selectable genes and at microsatellite loci, although mutations in these genes cause somewhat different mutator phenotypes. These cells are also resistant to killing by certain drugs and are defective in mismatch repair. Because the elevated mutation rates in these cells may lead to mutations in additional genes that are causally related to the other defects, here we attempt to establish a cause-effect relationship between the hMSH2 and hMSH6 gene mutations and the observed phenotypes. The endometrial tumor cell line HEC59 contains mutations in both alleles of hMSH2. The colon tumor cell line HCT15 contains mutations in hMSH6 and also has a sequence change in a conserved region of the coding sequence for DNA polymerase delta, a replicative DNA polymerase. We introduced human chromosome 2 containing the wild-type hMSH2 and hMSH6 genes into HEC59 and HCT15 cells. Introduction of chromosome 2 to HEC59 cells restored microsatellite stability, sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine treatment, and mismatch repair activity. Transfer of chromosome 2 to HCT15 cells also reduced the mutation rate at the HPRT locus and restored sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine treatment and mismatch repair activity. The results demonstrate that the observed defects are causally related to mutations in genes on chromosome 2, probably hMSH2 or hMSH6, but are not related to sequence changes in other genes, including the gene encoding DNA polymerase delta.  相似文献   

18.
We have determined the mutational specificity of 8-methoxypsoralen photoaddition at the endogenous adenine phosphoribosyltransferase gene of Chinese hamster ovary cells hemizygous for this locus. In addition, the distribution of 8-methoxypsoralen photo-adducts was resolved in vitro at the DNA sequence level, and compared with the observed site specificity for mutation. Among 27 mutants characterized, all were single base changes at AT base pairs: 16 A:T-->T:A, six A:T-->C:G, four A:T-->G:C and one -T frameshift. All these vents were targeted to potential sites of photoaddition. The vast majority of these sites were also detectable in vitro, suggesting that 8-methoxypsoralen plus UVA-induced mutational hotspots may be damage hotspots. Furthermore 26/27 mutations occurred at crosslinkable 5'TpA sites, supporting the notion that 8-methoxypsoralen biadducts rather than monoadducts are major premutagenic lesions in mammalian cells. Since 90% of our mutation collection could have resulted from damage on the non-transcribed strand, it appears that photoadducted thymine residues on the transcribed strand of the adenine phosphoribosyltransferase gene may be preferentially repaired. We therefore suggest a model for mutagenesis, induced by psoralen biadducts, based on the preferential incision of biadducts followed by translesion synthesis past modified T bases persisting on the non-transcribed strand.  相似文献   

19.
Heterozygous germ-line mutations in the DNA mismatch repair genes lead to hereditary nonpolyposis colorectal cancer. The disease susceptibility of individuals who constitutionally lack both wild-type alleles is unknown. We have identified three offspring in a hereditary nonpolyposis colorectal cancer family who developed hematological malignancy at a very early age, and at least two of them displayed signs of neurofibromatosis type 1 (NF1). DNA sequence analysis and allele-specific amplification in two siblings revealed a homozygous MLH1 mutation (C676T-->Arg226Stop). Thus, a homozygous germ-line MLH1 mutation and consequent mismatch repair deficiency results in a mutator phenotype characterized by leukemia and/or lymphoma associated with neurofibromatosis type 1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号