首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-18 is a product of macrophages and with IL-12 strikingly induces IFN-gamma production from T, B, and NK cells. Furthermore, IL-18 and 1L-12 synergize for IFN-gamma production from Th1 cells, although this combination fails to affect Th2 cells. In this study, we show that IL-12 and IL-18 promptly and synergistically induce T and B cells to develop into IFN-gamma-producing cells without engaging their Ag receptors. We also studied the mechanism underlying differences in IL-18 responsiveness between Th1 and Th2 cells. Pretreatment of T or B cells with IL-12 rendered them responsive to IL-18, which induces cell proliferation and IFN-gamma production. These IL-12-stimulated cells had both high and low affinity IL-18R and an increased IL-18R mRNA expression. In particular, IL-12-stimulated T cells strongly and continuously expressed IL-18R mRNA. However, when T cells developed into Th1 cells after stimulation with anti-CD3 and IL-12, they lowered this IL-12-induced-IL-18R mRNA expression. Then, such T cells showed a dominant response to anti-CD3 by IFN-gamma production when they were subsequently stimulated with anti-CD3 and IL-18. In contrast, Th2 cells did not express IL-18R mRNA and failed to produce IFN-gamma in response to anti-CD3 and IL-18, although they produced a substantial amount of IFN-gamma in response to anti-CD3 and IL-12. However, when Th1 and Th2 cells were stimulated with anti-CD3, IL-12, and IL-18, only the Th1 cells markedly augmented IFN-gamma production in response to IL-18, suggesting that IL-18 responsiveness between Th1 and Th2 cells resulted from their differential expression of IL-18R.  相似文献   

2.
The role of IL-12 role in regulating Th1/Th2 balance is attributed in part to the ability of this cytokine to induce IFNgamma production by NK and Th1 cells, which in turn promotes Th1 and inhibits Th2 development. In the present study, the requirement for IL-12 in the development of alloantigen-reactive Th1 was assessed by adding neutralizing anti-IL-12 Abs or the IL-12 receptor antagonist p40 homodimer to primary MLC. The resulting cell populations were assessed for Th1 development by measuring IFN-gamma production upon restimulation with alloantigens. While the addition of anti-IL-12 Abs to primary MLC did not influence subsequent cytokine production, addition of p40 homodimer markedly enhanced, rather than decreased, Th1 development. To determine which T cell population produced enhanced levels of IFN-gamma in response to p40 homodimer, CD4+ or CD8+ T cells were depleted from the MLC. While p40 homodimer was inhibitory to selected CD4+ Th1 development, it enhanced IFN-gamma production by CD8+ T cells. To test the in vivo relevance of these findings, mouse heterotopic cardiac allograft recipients were treated with either p40 homodimer, anti-CD8 mAb, or with both p40 homodimer and anti-CD8 mAb. Treatment of allograft recipients with p40 homodimer had no effect on the in vivo sensitization of IFN-gamma-producing cells and resulted in accelerated allograft rejection relative to unmodified recipients. However, p40 homodimer markedly prolonged allograft survival in mice depleted of CD8+ T cells. Hence, p40 homodimer stimulates CD8+ Th1 development in vitro but inhibits CD4+ T cell function both in vitro and in vivo.  相似文献   

3.
4.
Differentiation of naive CD4+ lymphocytes into either Th1 or Th2 cells is influenced by the cytokine present during initial Ag priming. IL-4 is the critical element in the induction of Th2 response; however, its origin during a primary immune response is not well defined. In the present study, we characterized a novel potential source of IL-4, the class I-selected CD4-CD8-TCR-alpha beta+ T cells. In a first set of experiments, we demonstrated that CD4-CD8-TCR-alpha beta+ thymocytes produce a large amount of IL-4 after in vitro anti-CD3 stimulation. This phenomenon was not observed in class I-deficient mice, demonstrating that among these cells, the class I-selected subset was predominantly responsible for IL-4 production. Further studies focused on the in vivo IL-4-producing capacity of peripheral CD4-CD8-TCR-alpha beta+ T cells. To this end, a single injection of anti-CD3 mAb, which promptly induces IL-4 mRNA expression, was used. Peripheral CD4-CD8-TCR-alpha beta+ T cells express high levels of IL-4 mRNA in response to in vivo anti-CD3 challenge. Furthermore, analysis performed in mice lacking MHC class I or class II molecules demonstrates that both the class I-selected subset of CD4-CD8-TCR+ and CD4+ peripheral T lymphocytes are the major IL-4 producers after in vivo anti-CD3 stimulation. These findings suggest that class I-selected CD4-CD8-TCR-alpha beta+ and CD4+ T cell populations are important sources of IL-4 probably implicated in the development of specific Th2 immune responses.  相似文献   

5.
At inflammatory sites, the number of activated bystander T cells exceeds that of Ag-activated T cells. We investigated whether IL-15, a monocyte-derived cytokine that shares several biologic activities with IL-2, may contribute to bystander T cell activation in the absence of IL-2 and triggering Ag. The addition of IL-15 to cocultures of monocytes and T cells stimulates CD4+ but not CD8+ T cells to produce IFN-gamma. IFN-gamma production requires endogenous IL-12, the production of which in turn is dependent upon CD40/CD154 interactions between CD4+ T cells and monocytes. Indeed, non-TCR-activated CD4+ but not CD8+ T cells express significant levels of CD154. IL-15 may enhance IFN-gamma in this system by up-regulating CD40 expression on monocytes and IL-12Rbeta1 expression on CD4+ T cells. Conversely, using neutralizing anti-IL-15 mAb, we show that the ability of IL-12 to augment IFN-gamma secretion is partly mediated by endogenous IL-15. Finally, in the absence of monocytes, a synergistic effect between exogenous IL-12 and IL-15 is necessary to induce IFN-gamma production by purified CD4+ T cells, while IL-15 alone induces T cell proliferation. It is proposed that this codependence between IL-12 and IL-15 for the activation of inflammatory T cells may be involved in chronic inflammatory disorders that are dominated by a Th1 response. In such a response, a self-perpetuating cycle of inflammation is set forth, because IL-15-stimulated CD4+ T cells may activate monocytes to release IL-12 that synergizes with IL-15 to induce IL-12 response and IFN-gamma production.  相似文献   

6.
SJL mice are known for their poor IgE production upon helminth infection. In this study, we have demonstrated that SJL standard B cells (85% IgM+ or B220+), prepared by complement-mediated T cell lysis, failed to proliferate and to produce IgE and IgG1 in response to LPS plus IL-4 in vitro. This diminished IgE production was restored by anti-IL-12 and enhanced by additional treatment with anti-IL-18, suggesting active suppression by the cells that produce IL-12 and IL-18. Indeed, SJL standard B cells were contaminated with Mac-1+ cells. Therefore, we removed macrophages by passing standard B cells through a Sephadex G-10 column (G10). Resultant cells (95% IgM+), designated as G10-B cells, responded to LPS and IL-4 by their proliferation and differentiation. G-10 treatment markedly diminished the proportion of B220- cells and Mac-1+ cells in SJL standard B cells. Furthermore, addition of SJL B220- cells dose dependently and MHC independently inhibited LPS plus IL-4-induced B cell growth and IgE production in SJL and BALB/c B cells. B220- cells in SJL standard B cells contained Mac-1+ cells (51%) and Fas ligand+ CD4-CD8- double-negative CD3intIL-2R beta+ T cells (26%). Thus, IL-12 and IL-18 produced by LPS-stimulated Mac-1+ cells stimulate this unique subpopulation of T cells to produce IFN-gamma, which in combination with Fas ligand, inhibits IgE production from the B cells. Our present results indicate that Mac-1+ cells and double-negative CD3intIL-2R beta+ T cells, uniquely abundant in the spleens of SJL mice, inhibit IgE production, indicating their new role in IgE response.  相似文献   

7.
Interleukin-12 (IL-12) induces differentiation of T helper 1 (Th1) cells, primarily through its ability to prime T cells for high interferon-gamma (IFN-gamma) production. We now report that the presence of IL-12 during the first several days of in vitro clonal expansion in limiting dilution cultures of polyclonally stimulated human peripheral blood CD4+ and CD8+ T cells also induces stable priming for high IL-10 production. This effect was demonstrated with T cells from both healthy donors and HIV+ patients. Priming for IL-4 production, which requires IL-4, was maximum in cultures containing both IL-12 and IL-4. IL-4 modestly inhibited the IL-12-induced priming for IFN-gamma, but almost completely suppressed the priming for IL-10 production. A proportion of the clones generated from memory CD45RO+ cells, but not those generated from naive CD45RO- CD4+ T cells, produced some combinations of IFN-gamma, IL-10, and IL-4 even in the absence of IL-12 and IL-4, suggesting in vivo cytokine priming; virtually all CD4+ clones generated from either CD45RO(-) or (+) cells, however, produced high levels of both IFN-gamma and IL-10 when IL-12 was present during expansion. These results indicate that each Th1-type (IFN-gamma) and Th2-type (IL-4 and IL-10) cytokine gene is independently regulated in human T cells and that the dichotomy between T cells with the cytokine production pattern of Th1 and Th2 cells is not due to a direct differentiation-inducing effect of immunoregulatory cytokines, but rather to secondary selective mechanisms. Particular combinations of cytokines induce a predominant generation of T cell clones with anomalous patterns of cytokine production (e.g., IFN-gamma and IL-4 or IFN-gamma and IL-10) that can also be found in a proportion of fresh peripheral blood T cells with "memory" phenotype or clones generated from them and that may identify novel Th subsets with immunoregulatory functions.  相似文献   

8.
alpha s1-Casein-specific CD8+ T cell clones expressed the interleukin (IL)-4 receptor, although they did not secrete detectable IL-4. We found that IL-4 significantly enhanced the secretion of interferon (IFN)-gamma by these CD8+ T cell clones. IL-4 also enhanced the secretion of IFN-gamma induced by stimulating the immobilized anti-CD3 antibodies of polyclonal CD8+ T cells which had been isolated from lymph nodes and were stimulated in vitro with the immobilized anti-CD3 antibody and IL-2. In addition, IL-4 added at the time of this first in vitro stimulation induced strong IFN-gamma productivity, as well as IL-4 and IL-10 productivity, which were detectable upon restimulation of these cells. Results are discussed in relation to the inhibitory effects of IFN-gamma production on IL-4-producing cells.  相似文献   

9.
Effector functions of CD4-CD8- double negative (DN) alpha beta TCR+ cells were examined. Among mouse DN alpha beta TCR+ thymocytes, NK1.1+ cells expressing a canonical V alpha 14/J alpha 281 TCR but not NK1.1- cells produce IL-4 upon TCR cross-linking and IFN-gamma upon cross-linking of NK1.1 as well as TCR. Production of IL-4 but not IFN-gamma from DN alpha beta TCR+NK1.1+ cells was markedly suppressed by IL-2. Whereas V alpha 14/J alpha 281 TCR+ cells express NK1.1+, these cells are not the precursor of DN alpha beta TCR+NK1.1+CD16+B220+ large granular lymphocytes (LGL). IL-2 induces rapid proliferation and generation of NK1.1+ LGL from DN alpha beta TCR+NK1.1- but not from DN alpha beta TCR+NK1.1+ cells. LGL cells exhibit NK activity and produce IFN-gamma but not IL-4 upon cross-linking of surface TCR or NK1.1 molecules. In contrast to IL-2, IL-7 does not induce LGL cells or NK activity from DN alpha beta TCR+NK1.1- cells but induces the ability to produce high levels of IL-4 upon TCR cross-linking. Our results show that DN alpha beta TCR+ T cells have several distinct subpopulations, and that IL-2 and IL-7 differentially regulate the functions of DN alpha beta TCR+ T cells by inducing different types of effector cells.  相似文献   

10.
We examined the ability of interleukin-12 (IL-12) and IL-18 to induce the production of gamma interferon (IFN-gamma) and nitric oxide (NO) by murine peritoneal exudate cells (PEC) and to stimulate the growth-inhibitory activity of these cells against Cryptococcus neoformans. PEC produced IFN-gamma and NO when stimulated with a combination of IL-12 and IL-18 but little or no IFN-gamma or NO when either cytokine was used alone. PEC anticryptococcal activity was mediated by IFN-gamma and NO production, since it was completely inhibited by a neutralizing anti-IFN-gamma monoclonal antibody (MAb) and N(G)-monomethyl-L-arginine, a competitive inhibitor of NO synthesis, respectively. To identify the IFN-gamma-producing cells among PEC stimulated with IL-12 and IL-18, we depleted NK cells, gammadelta T cells, or CD4+ T cells by treating PEC with specific Abs and complement. NK cell depletion strongly suppressed IFN-gamma production and almost completely inhibited NO production and anticryptococcal activity, while depletion of other cells had no such influence. Alternatively, purified NK cells by two cycles of glass adherence and magnetic separation with anti-CD3, -CD4, -CD8, and -B220 MAbs produced a greater amount of IFN-gamma by stimulation with IL-12 and IL-18 than unseparated non-glass-adherent PEC. Our results demonstrated that IL-12 and IL-18 synergistically induced NO-dependent anticryptococcal activity of PEC by stimulating NK cells to produce IFN-gamma.  相似文献   

11.
Dense CD4+ T cells isolated from naive mice produce only trace amounts of IL-9 when stimulated by immobilized anti-CD3 in combination with anti-CD28 Abs. In this situation, IL-9 production is significantly stimulated by TGF-beta and further enhanced by the addition of IL-4, which, by itself, has only a minimal influence. IFN-gamma was found to inhibit the enhancing effect of IL-4. However, increasing amounts of IL-4 in the presence of a constant concentration of IFN-gamma could overcome the inhibitory activity of IFN-gamma. The application of CD4+ T cells isolated from IL-2 knockout mice unequivocally revealed that IL-2 is essential for the production of IL-9 by T cells. In addition, the use of T cells from IL-4 knockout mice elucidated that the basic (IL-2 + TGF-beta) mediated IL-9 production is independent of IL-4. Therefore, our results demonstrate that optimal IL-9 production of naive dense CD4+ T cells is positively regulated at different levels: 1) by IL-2, which is essential for IL-9 secretion; 2) followed by TGF-beta, which promotes a considerable increase in IL-9 production above the level induced by IL-2; and 3) finally, by IL-4, which requires the presence of IL-2 and TGF-beta to strongly enhance the production of IL-9. IFN-gamma inhibits the production of IL-9 mainly at the level of IL-4 by neutralizing the effect of this cytokine.  相似文献   

12.
Within 1 day of infection with Leishmania major, susceptible BALB/c mice produce a burst of IL-4 in their draining lymph nodes, resulting in a state of unresponsiveness to IL-12 in parasite-specific CD4+ T cells within 48 h. In this report we examined the molecular mechanism underlying this IL-12 unresponsiveness. Extinction of IL-12 signaling in BALB/c mice is due to a rapid down-regulation of IL-12R beta2-chain mRNA expression in CD4+ T cells. In contrast, IL-12R beta2-chain mRNA expression was maintained on CD4+ T cells from resistant C57BL/6 mice. The down-regulation of the IL-12R beta2-chain mRNA expression in BALB/c CD4+ T cells is a consequence of the early IL-4 production. In this murine model of infection, a strict correlation is shown in vivo between expression of the IL-12R beta2-chain in CD4+ T cells and the development of a Th1 response and down-regulation of the mRNA beta2-chain expression and the maturation of a Th2 response. Treatment of BALB/c mice with IFN-gamma, even when IL-4 has been produced for 48 h, resulted in maintenance of IL-12R beta2-chain mRNA expression and IL-12 responsiveness. The data presented here support the hypothesis that the genetically determined susceptibility of BALB/c mice to infection with L. major is primarily based on an up-regulation of IL-4 production, which secondarily induces extinction of IL-12 signaling.  相似文献   

13.
Prior studies have implicated CD30 as a marker for Th2 cells, but the mechanism that underlies this correlation was unknown. We show here that CD30 was expressed on activated CD4+ T cells in the presence of IL-4. In the absence of endogenously produced IL-4, however, even Th2 lineage cells lost CD30 expression. Thus, CD30 is not an intrinsic marker of Th2 cells, but is inducible by IL-4. CD30 was also found to be down-regulated by IFN-gamma. Committed Th1 effector cells do not express CD30, although differentiating Th1 lineage cells temporarily express CD30. The transient expression of CD30 on differentiating Th1 lineage cells was mainly the result of endogenously produced IL-4 induced by IL-12. Culture of IL-12-primed cells under conditions that reverse the phenotype (Ag plus IL-4) resulted in two cell populations based upon their ability to express CD30. One population responded to IL-4 upon restimulation and became a CD30-positive, Th0-like cell population, while the other remained CD30 negative and synthesized only IFN-gamma. Thus, CD30 expressed on CD4+ T cells reflected the ability of CD4+ T cells to respond to IL-4.  相似文献   

14.
Multiple sclerosis (MS) is presumed to be a T-cell mediated chronic inflammatory disease of the central nervous system. Investigators previously demonstrated increased IFN-gamma (pro-inflammatory) and IL-10 (counterregulatory anti-inflammatory) in MS. The balance of pro-inflammatory and counterregulatory anti-inflammatory cytokines may be important in the stabilization of disease activity. Purified CD4+ and CD8+ T cells from patients with clinically definite, stable relapsing MS (RRMS) were stimulated by anti-CD3 mAb or Con A for 48 hours and cytokine supernatants analysed for production of IL-2, IL-6, IFN-gamma, TNF-alpha (potential pro-inflammatory) and IL-4, IL-10, and TGF-beta (potential counterregulatory anti-inflammatory). Con A activated CD4+ and CD8+ T cell proinflammatory cytokine IL-2 secretion, CD4+ T cell IL-6 secretion, CD4+ and CD8+ T cell TNF-alpha secretion and CD8+ T cell IFN-gamma secretion was decreased significantly in RRMS subjects compared to controls. CD3 activated CD4+ and CD8+ T cell IL-6 secretion and CD4+ T cell TNF-alpha secretion was significantly decreased in MS subjects compared to controls. In contrast, there was increased CD3-induced IFN-gamma in both CD4+ and CD8+ T cells and counterregulatory anti-inflammatory CD3-induced IL-10 secretion in CD4+ T cells in RRMS compared to controls. These data suggest that an equilibrium of a pro-inflammatory (IFN-gamma) and a counterregulatory anti-inflammatory (IL-10) cytokine may define stable clinically definite early RRMS.  相似文献   

15.
Anti-CD4 mAb-induced tolerance to transplanted tissues has been proposed as due to down-regulation of Thl cells by preferential induction of Th2 cytokines, especially IL-4. This study examined the role of CD4+ cells and cytokines in tolerance to fully allogeneic PVG strain heterotopic cardiac allografts induced in naive DA rats by treatment with MRC Ox38, a nondepleting anti-CD4 mAb. All grafts survived >100 days but had a minor mononuclear cell infiltrate that increased mRNA for the Thl cytokines IL-2, IFN-gamma, and TNF-beta, but not for Th2 cytokines IL-4 and IL-6 or the cytolytic molecules perforin and granzyme A. These hosts accepted PVG skin grafts but rejected third-party grafts, which were not blocked by anti-IL-4 mAb. Cells from these tolerant hosts proliferated in MLC and produced IL-2, IFN-gamma, and IL-4 at levels equivalent to naive cells. Unfractionated and CD4+ T cells, but not CD8+ T cells, transferred specific tolerance to irradiated heart grafted hosts and inhibited reconstitution of rejection by cotransferred naive cells. This transfer of tolerance was associated with normal induction of IL-2 and delayed induction of IFN-gamma, but not with increased IL-4 or IL-10 mRNA. Transfer of tolerance was also not inhibited by anti-IL-4 mAb. This study demonstrated that tolerance induced by a nondepleting anti-CD4 mAb is maintained by a CD4+ suppressor T cell that is not associated with preferential induction of Th2 cytokines or the need for IL-4; nor is it associated with an inability to induce Th1 cytokines or anergy.  相似文献   

16.
17.
IL-12 is a heterodimeric cytokine produced by APC that promotes the development of CD4+ Th1 cells and their IFN-gamma production after TCR/CD3 triggering. We here investigated the capacity of IL-12 to modify the expression on T cells of CD40 ligand (CD40L or CD154), a molecule transiently expressed on activated T cells and known to be of utmost importance for cognate interaction with B cells and for activation of dendritic cells and macrophages. Our data demonstrate that IL-12 up-regulates CD40L expression on anti-CD3-activated human peripheral blood T cells. For optimal induction of CD40L, IL-12 synergizes with IL-2 as well as with other costimulatory interactions, such as B7/CD28. The effect of IL-12 was observed at both the protein and the mRNA level. T cells costimulated by IL-12 provided more efficient help for IL-4-dependent B cell proliferation and for IgG production than when activated in the absence of IL-12. This helper activity was blocked by an mAb against CD40L, indicating that the effect of IL-12 on B cells is mediated indirectly through CD40L. The data thus suggest that the effects of IL-12 on cellular and humoral immune responses are partly mediated through CD40L induction.  相似文献   

18.
Previous studies on human Th subset development were restricted to the analysis of naive T cells activated with anti-CD3 mAb in the absence of physiologic APC. In this study, we have analyzed the role of cytokines and physiologic APC on T cell maturation in an Ag-specific system, in which naive neonatal CD4 T cells were primed with allogeneic dendritic cells (DC). We found that the cytokine profile of primed cells was dependent upon 1) the ratio between T cells and allogeneic DC and 2) the endogenous production of IL-4 and IL-12. Neutralization of IL-4 during primary MLR increased IFN-gamma production at priming and shifted the phenotype of primed cells from Th0 to Th1. These effects were IL-12 dependent, in that they were suppressed by anti-IL-12 Abs. The production of IL-12 in primary MLR was further evidenced by the presence of IL-12 p40 in the culture supernatant fluids. IL-12 production was suppressed by exogenous IL-4 and increased by anti-IL-4 blocking mAbs, indicating that endogenous IL-4 down-regulated IL-12 production by DC. Finally, IL-12 was produced as a result of T cell/DC interaction involving the CD40/CD40 ligand and CD28/B7 costimulation pathways, as revealed by the inhibitory effect of anti-CD40 ligand mAb and CTLA-4Ig. These observations suggest that in neutral conditions, Ag presentation by DC results in the coordinate production of naive T cell-derived IL-4 and DC-derived IL-12 that in concert shape the cytokine profile of Th cells.  相似文献   

19.
Primary and secondary responses of murine CD4+ T cells and CD8+ T cells upon stimulation with staphylococcal enterotoxin E (SEE) bearing superantigenic properties were examined. Both isolated C57BL/6 splenic CD4+ T cells and CD8+ T cells proliferated and produced IL-2 and IFN-gamma upon stimulation with SEE in substantial levels. The amounts of IL-2 were greater in CD4+ T cells and those of IFN-gamma were somewhat greater in CD8+ T cells. SEE-induced CD4+ T lymphoblasts, larger parts of which bore the V beta 11 element in their TCR, proliferated, produced IL-2 and IFN-gamma, and showed toxin-dependent cytotoxicity in substantial levels upon restimulation with SEE. By contrast, SEE-induced CD8+ T lymphoblasts, the larger part of which bore the V beta 11 element, did not show the first two of the three responses at all upon restimulation with SEE, whereas these cells showed greater cytotoxicity. The CD8+ T lymphoblasts did not suppress the reactivity of the CD4+ T lymphoblasts. Both SEE-induced CD4+ T lymphoblasts and CD8+ T lymphoblasts proliferated and produced IL-2 and IFN-gamma in comparable levels upon stimulation with rIL-2 or mAb to CD3 or V beta 11.  相似文献   

20.
The influence of ageing on phenotype and function of CD4+ T cells was studied by comparing young (19-28 years of age) and aged (75-84 years of age) donors that were selected using the SENIEUR protocol to exclude underlying disease. An age-related increase was observed in the relative number of memory cells, not only on the basis of a decreased CD45RA and increased CD45RO expression, but also on the basis of a decrease in the fraction of CD27+CD4+ T cells. Our observation that the absolute number of CD45RO+CD4+ T cells was increased, while absolute numbers of CD27-CD4+ T cells remained unchanged in aged donors, indicates that the latter subset does not merely reflect the size of the CD45RO+CD4+ T cell pool. The increased fraction of memory cells in the aged was functionally reflected in an increased IL-4 production and T cell proliferation, when cells were activated with the combination of anti-CD2 and anti-CD28, whereas IL-2 production was comparable between both groups. No differences were observed with respect to proliferative T cell responses or IL-2 production using plate-bound anti-CD3 or phytohaemagglutinin (PHA). The observation that IL-4 production correlated with the fraction of memory cells in young donors but not in aged donors suggests different functional characteristics of this subset in aged donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号