首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titania microspheres with higher photocatalytic activity have been synthesized using TiCl4 and FeCl3 as the precursor in the presence of Span-80. The products were characterized with XRD, TEM and UV–vis DRS. XRD and TEM indicated that the microsphere was a mixture of rutile, brookite and anatase with a diameter of about 5–7 μm. The photocatalytic experiments revealed that the microspheres exhibited high photocatalytic activities under UV-light and solar irradiation. The degradation rate of methyl orange (MO) was 100% under UV-light irradiation for 3 h and 91% under solar irradiation for 6 h. In particular, the catalysts could be readily separated by sedimentation after the photocatalytic reaction.  相似文献   

2.
Titania (TiO2)–silica (SiO2) nanoparticles were synthesized from sprayed droplets of a mixture of TEOS and TTIP by flame spray pyrolysis (FSP). The effect of molar ratio between TEOS and TTIP in the mixture on the particle properties such as particle morphology, average particle diameter, specific surface area, crystal structure, etc., were determined using TEM, XRD, BET, and FT-IR. A UV-spectrometer was also used to measure the absorption spectrum and the band gap energy of the product particles. As the molar ratio of TEOS/TTIP increased by increasing TEOS concentration at the fixed TTIP concentration, the average particle diameter of the mixed oxide nanoparticles increased with maintaining uniform dispersion between TiO2 and SiO2, and crystal structure was transformed from anatase to amorphous. The band gap energy of the TiO2–SiO2 nanoparticles increased with respect to the increase of the molar ratio due to the decrease of width of UV-absorption spectrum. Photocatalytic activity of TiO2–SiO2 composite particles decreased with the concentration of TEOS.  相似文献   

3.
In this study, TiO2 nanoparticles were treated with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (fluorosilane) in an alkaline condition. The treated nanoparticles were added to a water-base acrylic coating to introduce photocatalytic activity. Dispersion of the nanoparticles and also Ti element wt% on the coatings’ surface were evaluated using atomic force microscopy and energy dispersive X-ray analyses, respectively. Photocatalytic activity of the coatings was investigated via study of the decomposition – under UVA irradiation – of Rhodamine B, as a pollutant model deposited on the coatings’ surface. Durability of the coatings in short-term was investigated using atomic force microscopy and scanning electron microscopy observations.  相似文献   

4.
Pure anatase TiO2 photocatalyst with different Ag contents was prepared via a controlled and energy efficient microwave assisted method. The prepared material was further characterized by several analytical techniques like X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface area measurement (BET), Fourier transform-infrared spectroscopy (FT-IR), diffused reflectance spectroscopy (DRS), and thermogravimetric–differential thermal analysis (TGA–DTA). A 10 nm average crystallite size with nano-crystals of pseudo-cube like morphology was obtained for optimal (0.25 mol%) Ag doped TiO2. The present research work is mainly focused on the enhancement of degradation efficiency of methyl orange (MO) by doping of Ag in TiO2 matrix using UV light (365 nm). A 99.5% photodegradation efficiency of methyl orange was achieved by utilizing 0.25 mol% Ag doped TiO2 (1 g/dm3) at pH=3 within 70 min. Recyclability of photocatalyst was also studied, with the material being found to be stable up to five runs.  相似文献   

5.
To enhance the photocatalytic activity of TiO2, V and Zn co-doped TiO2 films were synthesized by the sol–gel method. The experimental results indicated that the films were composed of round-like nano-particles or aggregates. V and Zn codoping could not only obviously increase the specific surface area of TiO2 but also result in the narrowed band gap of TiO2 sample. The photocatalytic activities of the TiO2 films were evaluated by the photocatalytic decomposition of organic dyes in aqueous solution. Compared with un-doped TiO2 film or single doped TiO2 film, V and Zn co-doped TiO2 film exhibited excellent photocatalytic activities under both UV light and visible light. The improvement mechanism by V and Zn codoping was also discussed.  相似文献   

6.
Nanocrystalline I-F-codoped TiO2 was prepared by a sol-gel-impregnation method, using tetrabutylorthotitanate in a mixed NH4I-NH4F aqueous solution. The as-prepared TiO2 was characterized with UV-vis diffuse reflectance spectra, X-ray diffraction and nitrogen adsorption. The degradation of methylene blue (MB) over as-prepared TiO2 in aqueous solution under simulated sunlight irradiation was remarkably enhanced by codoping with I and F. The effects of codoping and calcination temperature on the photocatalytic activity and microstructures were investigated. The photocatalytic activity of as-prepared I-F-codoped TiO2 was remarkably higher than that of pure, I-doped, and F-doped TiO2 when the molar ratios of I and F to Ti were kept in the value of 10. The influence of I-F-modification on the photocatalytic activity was discussed by considering the higher surface area, entire anatase phase, effective dopant content, and stronger absorbance of sunlight, corresponding to the higher quantum efficiency. In addition to a complete removal of color, the as-prepared TiO2 was simultaneously able to oxidize MB and small amounts of intermediates such as formic acid and phenol were detected. After prolonged sunlight irradiation some intermediates almost vanished, and MB appeared to be eventually mineralized to NH4+, NO3 and SO42−.  相似文献   

7.
A series of S-doped TiO2 with visible-light photocatalytic activity were prepared by a simple hydrolysis method using titanium tetrachloride (TiCl4) and sodium sulfate (Na2SO4) as precursors. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis diffuse reflectance spectrophotometer (UV–Vis DRS), and X-ray photoelectron spectroscopy (XPS). With the doping of S, photocatalysts with small crystal size, high content of anatase phase were obtained. The result showed that S-doped TiO2 demonstrate considerably high photoactivity under low power visible LED light irradiation, while undoped TiO2 and the Degussa P25 have nearly no activity at all. The possible mechanism of S-doped for the visible-light activity was discussed.  相似文献   

8.
The TiO2 pillared fluoromica powder was kneaded with polylactic acid resin. The composite showed high photocatalytic activity for degradation of acetaldehyde and toluene gas, especially at the range of 1–3 wt.% pillared mica powder, and this photocatalytic activity was higher than that of resins containing even higher amounts of commercial TiO2 (P-25, Degussa). The composite test pieces of pillared mica showed smaller photocatalytic deterioration than the samples with P-25 powder in out-door weathering tests. Thus, the TiO2 pillared clay resin composite shows excellent prevention of photocatalytic deterioration and high photocatalytic activity in comparison with P-25.  相似文献   

9.
TiO2 thin films have been prepared by physical vapour deposition (PVD) and plasma enhanced chemical vapour deposition (PECVD) to study the UV-induced photo-activity of this material. Wetting angle variations and photo-catalytic activity for the degradation of dyes upon UV illumination have been compared for thin films with different crystalline structure (amorphous, rutile and anatase), microstructure (columnar, compact, etc.) and porosities as estimated from the values of their refraction indices and their direct assessment with a quartz crystal monitor. The surface of the thin films became superhydrophilic upon UV light irradiation and then it recovered its original state by keeping the samples in the dark. Wetting angle decays follow very similar kinetics for amorphous and crystalline films, independently of their actual porosities. By contrast the photo-catalytic activity was very dependent on the crystalline structure of the films (anatase > rutile > amorphous) and on their porosities. The different behaviour depicted by the films with regard to these two properties suggests that they respond to different though related mechanisms and that they cannot be considered as equivalent when trying to prove the photo-activity of TiO2.  相似文献   

10.
Mesoporous TiO2 photocatalysts have been synthesized using polyethylene glycol (PEG) as a template direction agent in diluted acetic acid aqueous solution. This medium slows down the hydrolysis reaction of titanium sources due to the hydrolytic retardant and the strong chelating effects of acetic acid. A hydrothermal treatment process was introduced to better control the resultant mesoporous structures. The effects of PEG molecular weight and thermal treatment temperature on the resultant structure and photoactivity were investigated. Morphological, structural and phase compositional properties of the resultant photocatalysts were systematically characterized using transmission electron microscopy, X-ray diffraction and nitrogen adsorption/desorption analysis. The mesoporous structure with diameters between 13.3 and 17.0 nm and mean porous sizes that ranged from 9.6 to 13.3 nm were obtained when the molecular weight of PEG were varied from 200 to 20,000. The mesoporous diameters were changed significantly from 9.8 to 18.4 nm with mean porous sizes slightly increasing from 8.0 to 10.0 nm when the calcination temperature was varied from 350 to 550 °C. The activities of the resultant TiO2 photocatalysts were evaluated using 2,4,6-tribrominated phenol as a testing compound that represents a class of toxic brominated flame retardants. The experimental results revealed that the photocatalytic activity depends on the phase and on the structural characteristics of the resultant photocatalysts.  相似文献   

11.
The Z-scheme type CdS–Au–TiO2 hollow nanorod arrays have been constructed on glass substrates by following these simple steps: firstly, highly ordered TiO2 hollow nanorod arrays (THNAs) were synthesized by liquid phase deposition (LPD) using ZnO nanorod arrays as templates; then both Au core and CdS shell nanoparticles were achieved on the THNAs by in situ photodeposition. The prepared three-component films were characterized by field-emission scanning electron microscopy (FSEM), high-resolution transmission electron microscope (HRTEM), Raman scattering and ultraviolet–visible absorption spectrum. The results showed that Au–CdS core–shell nanoparticles were well dispersed on wall of anatase THNAs from top to bottom. The three-component nanojunction system was evaluated for their photocatalytic activity through the degradation of methylene blue (MB) in aqueous solution. It was found that the CdS–Au–TiO2 three-component hollow nanorod arrays exhibited significantly enhanced photocatalytic activity compared with single (THNAs) and two components (Au-THNAs or CdS-THNAs) systems. Reasons for this enhanced photocatalytic activity were revealed by photoluminescence (PL) results of our samples.  相似文献   

12.
13.
A highly sunlight active Ni-loaded TiO2 nanocomposite (Ni/TiO2) is successfully prepared by a simple chemical reduction method using tetrabutyl titanate as a precursor, Ni(NO3)2·6H2O as a nickel source, and N2H4·H2O as a reductant, respectively. The crystal structure, morphology and UV–vis diffuse reflectance characteristics are investigated by XRD, TEM, and UV–vis diffuse reflectance spectroscopy, while the photocatalytic performance of Ni/TiO2 is evaluated by photocatalytic degradation of methyl orange solution under UV and sunlight irradiation. Results show that the crystal structure of TiO2 is not changed upon the loading of Ni, the photocatalytic performance of TiO2 under both UV-light and sunlight, however, is enhanced greatly. The enhancement of the photocatalytic performance of Ni/TiO2 is attributed to the increase of the photogenerated electron–hole separation efficiency and the advanced absorption of light due to surface plasmon effect of Ni nanoparticles.  相似文献   

14.
Pure TiO2 anatase particles with a crystallite diameters ranging from 4.5 to 29 nm were prepared by precipitation and sol–gel method, characterized by X-ray diffraction (XRD), BET surface area measurement, UV–vis and scanning electron microscopy (SEM) and tested in CO2 photocatalytic reduction. Methane and methanol were the main reduction products. The optimum particle size corresponding to the highest yields of both products was 14 nm. The observed optimum particle size is a result of competing effects of specific surface area, charge–carrier dynamics and light absorption efficiency.  相似文献   

15.
In this study, TiO2/SiO2 nanocomposites were synthesized via a sol-gel route by adding tetraethylorthosilicate (TEOS) to a solution containing different molar ratios of Degussa P25 TiO2 nanoparticles. FTIR, TGA, EDAX and XRD techniques were used to characterize the modified nanoparticles. Photocatalytic activity of the nanoparticles in an aqueous solution and into the acrylic based coating was evaluated using colour coordinate data measurements, SEM analysis, gloss measurements and FTIR spectroscopy, in the presence of Rhodamine B (Rh.B) dyestuff, as a pollutant model, before and after exposure to the UVA (340 nm) irradiation and compared to their unmodified counterparts.The results showed that silica grafting effectively reduced the photocatalytic activity of the TiO2 nanoparticles as evidenced by absorption spectra and colour changes of Rh.B aqueous solutions during the UVA irradiation. The results revealed the effectiveness of sol-gel route for preparation of TiO2/SiO2 nanocomposites. The optimum result was obtained with 1% molar ratio of TiO2:TEOS. Addition of TiO2/SiO2 nanocomposites into the acrylic based coating revealed reduction of photo-degradation of Rh.B compared to untreated nanoparticles. Finally, inclusion of TEOS treated TiO2 nanoparticles into the aqueous organic coatings, provides photocatalytic property and as a result, it can possibly be considered for self-cleaning coatings.  相似文献   

16.
17.
Na-free anatase TiO2 film was prepared on soda-lime glass (SL-glass) from a TiF4 aqueous solution upon addition of boric acid at 60 °C. It was found that the as-prepared TiO2 film before calcination showed a higher photocatalytic activity than the calcined sample (500 °C). This could be attributed to the fact that the calcined TiO2 film contained decent Na+ ions, which was diffused from the SL-glass substrate into the TiO2 film during calcination, resulting in the decrease of photocatalytic activity.  相似文献   

18.
Hydrophilic microporous membranes were prepared based on polypropylene (PP) cast films blended with a commercial acrylic acid grafted polypropylene (PP-g-AA) via melt extrusion followed by grafting titanium dioxide (TiO2) nanoparticles on its surface, annealing and stretching. ATR-FTIR, XPS and EDS analyses showed that the hydrophilic segments of an amphiphilic modifier (PP-g-AA) acted as surface functional groups on the film surface. The results indicated that the presence of the modifier was very important for grafting TiO2 nanoparticles on the film surface. Compared to PP and PP/PP-g-AA blend films, the water contact angle decreased by a factor of 2.5 after grafting TiO2 on the surface of the films, meanwhile the water vapor permeability of the microporous membranes prepared from those films increased by a factor of 1.5. All these results indicated that the hydrophilicity of the modified PP membranes was improved.  相似文献   

19.
Composite nanofibers consisting of Mn2O3 and TiO2 were prepared by the electrospinning process, and tested as Gram-class-independent antibacterial agent and photocatalyst for organic pollutants degradation. Initially, electrospinning of a sol–gel consisting of titanium isopropoxide, manganese acetate tetrahydrate and poly(vinyl pyrrolidone) was used to produce hybrid polymeric nanofibers. Calcination of the obtained nanofibers in air at 650 °C led to produce good morphology Mn2O3/TiO2 nanofibers. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the as-spun nanofibers and the calcined product. X-ray powder diffractometry (XRD) analysis was also used to characterize the chemical composition and the crystallographic structure of the sintered nanofibers. The antibacterial activity of Mn2O3/TiO2 nanofibers against Gram negative and Gram positive bacteria was investigated by calculating the minimum inhibitory concentration after treatment with the nanofibers. Investigations revealed that the lowest concentration of Mn2O3/TiO2 nanofibers solution inhibiting the growth of Staphylococcus aureus ATCC 29231 and Escherichia coli ATCC 52922 strains is 0.4 and 0.8 μg/ml, respectively. Incorporation of Mn2O3 significantly improved the photodegradation of methylene blue (MB) dye under the visible light irradiation due to enhancing rutile phase formation in the TiO2 nanofibers matrix.  相似文献   

20.
Nanospherical titanium oxide with anatase structure was obtained at low temperature and normal pressure using a simple method of preparation. The dilute titanium (III) chloride solution was stirred at room temperature for several hours, and then ammonium hydroxide with hydrogen peroxide was added. A yellow gel TiO2·xH2O was obtained with nanodot shape and amorphous structure. Heated at 300 °C, it crystallized to pure anatase structure with nanospherical shape. The anatase particles prepared show good adsorption and photodegradation of Congo red solution under the sunlight. Materials were characterized by powder X-ray diffraction, thermal analysis, transmission electron microscope and UV spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号