首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Porous hydroxyapatite (HA) scaffolds with interconnected spherical pores were fabricated by slip casting using a polymer template. Templates were produced using polymer beads, NaCl, and adhesive (N100). Effects of the preparation process on the pore structures and mechanical properties of the porous HA scaffolds were investigated. Pore interconnectivity was improved by adding NaCl particles with appropriate diameters to the polymer template. The size of the adhesive area could be controlled by adjusting the concentration of N100. The pore size could be controlled between 200 ± 42 and 400 ± 81 μm, and the porosity between 50.2 and 73.1%, by changing the size of the polymer beads and the volume of the NaCl particles. The compressive strength decreased as the porosity or pore size increased.  相似文献   

2.
Fabrication of Macroporous Alumina with Tailored Porosity   总被引:3,自引:0,他引:3  
Macroporous alumina materials were fabricated via colloidal processing using polymer spheres as the template and ceramic particles as the building blocks. The influence of the suspension conditions and volume ratio of the polymer/ceramic particles on the formation of the pore structure has been investigated. The results showed that the suspension conditions have a significant effect on the pore morphology. A well-defined three-dimensional, ordered porous structure with a controllable pore size and porosity could be obtained through the hetero-coagulation, self-assembled processing of the polymer/ceramic particles. The pore size and porosity could be easily tailored by varying the polymer size and the volume ratio of the polymer/ceramic particles.  相似文献   

3.
《Ceramics International》2022,48(4):5017-5025
Piezoelectric energy harvesting has attracted significant attention in recent years due to their high-power density and potential applications for self-powered sensor networks. In comparison to dense piezoelectric ceramics, porous piezoelectric ceramics exhibit superiority due to an enhancement of piezoelectric energy harvesting figure of merit. This paper provides a detailed examination of the effect of pore morphology on the piezoelectric energy harvesting performance of porous barium calcium zirconate titanate 0.5Ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT) ceramics. Three different pore morphologies of spherical, elliptical, and aligned lamellar pores were created via the burnt-out polymer spheres method and freeze casting. The relative permittivity decreased with increasing porosity volume fraction for all porous BCZT ceramics. Both experimental and simulation results demonstrate that porous BCZT ceramics with aligned lamellar pores exhibit a higher remanent polarization. The longitudinal d33 piezoelectric charge coefficient decreased with increasing porosity volume fraction for the porous ceramics with three different pore morphologies; however, the rate of decrease in d33 with porosity is slower for aligned lamellar pores, leading to the highest piezoelectric energy harvesting figure of merit. Moreover, the peak power density of porous BCZT ceramics with aligned lamellar pores is shown to reach up to 38 μW cm-2 when used as an energy harvester, which is significantly higher than that of porous BCZT ceramics with spherical or elliptical pores. This work is beneficial for the design and manufacture of porous ferroelectric materials in devices for piezoelectric energy harvesting applications.  相似文献   

4.
《Ceramics International》2021,47(18):25169-25176
In this paper, porous ceramics with high porosity and low bulk density were prepared by using steel slag and kaolin as main raw materials and polyurethane sponge as template. The effects of steel slag particle size, zirconia addition, the solid content of the slurry, and the addition of polycarboxylic acid water-reducing agent on the properties of ceramics were studied. In addition, by adding a surfactant (Sodium dodecyl sulfate) to form fine pores on the original framework of the three-dimensional network porous ceramic, the shortcomings of the single as well as the uncontrollable density and porosity of the porous ceramic, which are produced by the template method, are improved. When the grinding time of steel slag is 90 min, the content of zirconia is 3% wt, the solid content of ceramic slurry is 64% wt, and 0.6% wt polycarboxylic acid water-reducing agent and 0.4% of surfactant are added, the prepared porous ceramic skeleton is clear and good. The porous ceramic has a low bulk density (as low as 157.869 kg/m3), high porosity (about 94.05%) and high compressive strength (0.2 MPa). The crystalline phase of it is mainly composed of anorthite, gehlenite, forsterite and quartz. The addition of zirconia, water-reducing agent and surfactant only changes the macrostructure of porous ceramics, and does not change its crystal phase composition. The preparation of porous ceramics from steel slag not only solves the recycling problem of steel slag, but also provides a good substitute for main raw materials of porous ceramics.  相似文献   

5.
Polyacrylate salts and polyacrylamide have been extensively used for absorbing and/or retaining large amounts of water and/or ionic species. Herein, we propose the use of this polymers’ swelling capability as a new way to obtain porous spheres of nanocrystalline hydroxyapatite (HA). Macroporous nanostructured HA with a pore size between 1 and 500 μm is obtained when using the hydrogel as template. The removal of the organic template gives rise to the material in the form of a sphere which size and shape can be determined by the template contour. The use of this type of polymer constitutes not only an easy way to obtain HA beads but it would be also possible to form scaffolds with different shapes and sizes due to the versatility of the polymer. Degradation and bioactivity tests of the ceramic material have been performed showing an enhanced bioactivity and a suitable degradation rate to be applied in bone tissue engineering.  相似文献   

6.
《Ceramics International》2016,42(13):14679-14684
This study investigated the effects of NaCl additive on the phase composition, pore structure and mechanical property of porous biphasic calcium phosphate (BCP) ceramics, which were prepared by freeze-casting. The results indicated that the addition of NaCl promoted transformation of β-tricalcium phosphate to hydroxyapatite in the BCP ceramics; the OH group in HA phase of BCP ceramic was partially replaced by chloride ion. As the mass fraction of NaCl in the slurry increased from 0 to 3%, the porosity of obtained porous BCP ceramics decreased from 77.76% to 60.22%; the average width of dendritic pores increased from 74.37 µm to 111.27 µm; the compressive strength achieved threefold increase. As the amount of NaCl additive reached 4.5%, the porosity, pore width, and compressive strength of the porous BCP ceramics were comparable with those modified by 3% NaCl. NaCl is regarded as an effective additive to tailor the pore structure and property of freeze-cast porous ceramics.  相似文献   

7.
Spherical SiC powders were prepared at high temperature using commercial SiC powders (4.52 µm) with irregular morphology. The influence of spherical SiC powders on the properties of SiC porous ceramics was investigated. In comparison with the as-received powders, the spheroidized SiC powders exhibited a relatively narrow particle size distribution and better flowability. The spheroidization mechanism of irregular SiC powder is surface diffusion. SiC porous ceramics prepared from spheroidized SiC powders showed more uniform pore size distribution and higher bending strength than that from as-received SiC powders. The improvement in the performance of SiC porous ceramics from spheroidized powder was attributed to tighter stacking of spherical SiC particles. After sintering at 1800 °C, the open porosity, average pore diameter, and bending strength of SiC porous ceramics prepared from spheroidized SiC powder were 39%, 2803.4 nm, and 66.89 MPa, respectively. Hence, SiC porous ceramics prepared from spheroidized SiC powder could be used as membrane for micro-filtration or as support of membrane for ultra/nano-filtration.  相似文献   

8.
以煅烧α-Al2O3为原料,稀土氧化镧(La2O3)为添加剂,羧甲基纤维素为成型粘结剂,通过混料、困料、研磨、模压成型、高温烧结等工序制备了氧化铝多孔陶瓷,研究了烧结温度及La2O3添加量对氧化铝多孔陶瓷的线收缩率、体积密度、孔隙率、抗折强度和微观形貌的影响。结果表明:在相同烧结温度下,随稀土添加量的增加,多孔陶瓷的体积密度、线收缩率与抗折强度均降低,而孔隙率则逐渐增加。微观形貌与X衍射分析表明,稀土La2O3的加入,抑制了氧化铝颗粒间的烧结,并在高温下与氧化铝反应生成了片状晶体LaAl11O18,片状晶LaAl11O18阻碍了氧化铝晶粒的长大,进而抑制了坯体的收缩,最终使得氧化铝多孔陶瓷具有较高的孔隙率。  相似文献   

9.
《Ceramics International》2016,42(3):4526-4531
Porous SiC ceramics were prepared by freeze-casting process. In order to enhance the mechanical properties of the porous SiC, poly(vinyl alcohol) (PVA) was added as binder and pore morphology controller in this work. The results indicated that high porosity (>60%) SiC ceramics was obtained although the sintering temperature was over 2000 °C. The pore structure could be divided into two kinds: macropores generated by sublimation of large ice crystals, and micropores in the ceramic matrix caused by sublimating of small ice crystals, stacking of SiC particles, and burning out of PVA. With the increase of the sintering temperature, the specimens exhibited higher density, thus resulted in higher strength. Porous SiC ceramics sintered at 2100 °C showed a good flexural strength of 11.25 MPa with an open porosity as high as 66.46%.  相似文献   

10.
《Ceramics International》2020,46(9):13047-13053
Porous (Ba,Sr)(Co,Fe)O3-δ (BSCF) ceramics with high open porosity and good electrical conductivity was fabricated using Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), which shows a high mixed ionic-electronic conductivity. In general, during the fabrication of porous ceramics by the sacrificial template method using pore former particles, closed pores are easily formed unless sufficient pore former particles are added. In this study, we have devised a method using the gelatinization-retrogradation phenomena of starch for producing a porous body with an excellent percolated pore network structure. By dispersing BSCF and starch in an aqueous slurry (0–50% by weight) and heating, gelatinization of the starch occurred and the starch particles adhered to each other. Furthermore, in order to retain the percolated structure, the water solvent was removed by freeze-drying without heating to obtain a dried green body. The sintering behavior of the porous BSCF bodies prepared under various conditions was characterized by microstructural observations and relative density measurements. By optimizing the process conditions of the gelatinization and retrogradation, a porous body having an open porosity of 48.3%, and with 99% of the total pores open, was obtained. The matrix was also well connected and showed a sufficiently high conductivity which was similar to the porous bodies made by the traditional sacrificial template method.  相似文献   

11.
Anatase porous ceramics were produced at low temperatures below 350°C by hydrothermal hot-pressing of amorphous titania consisting of spherical particles prepared by hydrolysis of titanium tetraethoxide. After fine anatase crystals were formed in the original amorphous spheres by hydrothermal hot-pressing, the spherical particles were deformed and the fine anatase crystals flowed into the interstices among the original spheres by compression from outside the autoclave to form a compact with homogeneous distribution of fine pores. The fine anatase crystals in the compacts were bonded together by dissolution and deposition to form a compact with high mechanical strength. The porous anatase ceramics with open pores were prepared by drying in air after removing water which had occupied the pores in the compacts during hydrothermal hot-pressing.  相似文献   

12.
The effects of porosity on the electrical and thermal conductivities of porous SiC ceramics, containing Y2O3–AlN additives, were investigated. The porosity of the porous SiC ceramic could be controlled in the range of 28–64 % by adjusting the sacrificial template (polymer microbead) content (0–30 wt%) and sintering temperature (1800–2000 °C). Both electrical and thermal conductivities of the porous SiC ceramics decreased, from 7.7 to 1.7 Ω−1 cm−1 and from 37.9 to 5.8 W/(m·K), respectively, with the increase in porosity from 30 to 63 %. The porous SiC ceramic with a coarser microstructure exhibited higher electrical and thermal conductivities than those of the ceramic with a finer microstructure at the equivalent porosity because of the smaller number of grain boundaries per unit volume. The decoupling of the electrical conductivity from the thermal conductivity was possible to some extent by adjusting the sintering temperature, i.e., microstructure, of the porous SiC ceramic.  相似文献   

13.
《Ceramics International》2020,46(1):523-530
The present paper reports the dependence of structural and functional properties on the porosity level with values down to 50% in BaTiO3 ceramics. Micro-porosity (pore size below 15 μm) with (0–3) connectivity has been produced by using dried pollen particles as sacrificial template. The properties of such porous ceramics are mostly affected by porosity, but also by possible small doping with foreign ions resulted from the template and by small variations of Ba/Ti stoichiometry at the ceramic-pore interfaces, as observed by a shift of the Curie temperature towards lower values when porosity level increases. The dielectric relaxation evidenced a few processes characterised by different activation energies which seem to be not affected by porosity, i.e. they might be assigned to the ceramic part and not to the ceramic-pore interfaces. When increasing porosity, a regular tilting of P(E) loops and increasing of coercivity and reducing polarization were observed, as result of reduction of active ferroelectric component and to the field inhomogeneity in such ceramics.  相似文献   

14.
Calcium Phosphate Bioceramics with Various Porosities and Dissolution Rates   总被引:1,自引:0,他引:1  
Porous bioceramics, such as hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic HA/TCP, were fabricated using the polyurethane sponge technique. The porosity of the ceramics was controlled by a multiple coating of the porous body. When a porous body was produced by a single coating, the porosity was ∼90%, and the pores were completely interconnected. When the sintered body was coated five times after the porous network had been made, the porosity decreased to 65%. As the porosity decreased, the strength increased exponentially. The TCP exhibited the highest dissolution rate in a Ringer's solution, and the HA had the lowest rate. The biphasic HA/TCP showed an intermediate dissolution rate.  相似文献   

15.
1 INTRODUCTION Fast gas-liquid phase reactions over solid cata- lysts easily cause concentration gradient in reactors and catalysts because of relatively slow diffusion as well as the frequent occurrence of low concentration when gasses are dissolved. Such concentration gradi- ent caused by the limitation of mass transfer influ- ences the reaction rate as well as selectivity. Conven- tional strategies for gas-liquid-solid phase catalytic reactions comprise slurry reactors and trickle bed r…  相似文献   

16.
Porous SiC ceramics were fabricated by the carbothermal reduction of polysiloxane-derived SiOC containing polymer microbeads followed by sintering. The effect of the SiC powder:polysiloxane-derived SiC (SiC:PDSiC) ratio on the porosity and flexural strength of the porous SiC ceramics were investigated. The porosity generally increased with decreasing SiC:PDSiC ratio when sintered at the same temperature. It was possible to control the porosity of porous SiC ceramics within a range of 32–64% by adjusting the sintering temperature and SiC:PDSiC ratio while keeping the sacrificial template content to 50 vol%.The flexural strengths generally decreased with increasing porosity at the same SiC:PDSiC ratio. However, a SiC:PDSiC ratio of 9:1 and a sintering temperature of 1750 °C resulted in excellent strength of 57 MPa at 50% porosity. Judicious selection of the sintering temperature and SiC:PDSiC ratio is an efficient way of controlling the porosity and strength of porous SiC ceramics.  相似文献   

17.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

18.
陈晨  于景媛  李强 《硅酸盐通报》2021,40(1):241-251
本文采用添加造孔剂法制备孔隙呈现梯度分布的多孔载Ag羟基磷灰石(Ag-HA)陶瓷.研究了造孔剂分布、烧结温度和载Ag含量对梯度多孔Ag-HA陶瓷孔隙度的影响.分析了烧结产物的物相组成和微观形貌,测量了烧结后梯度多孔Ag-HA陶瓷的压缩性能和抗菌性能.研究结果表明:随着中间层造孔剂含量增加,梯度多孔Ag-HA陶瓷的孔隙度...  相似文献   

19.
A method for making porous ceramic prepared by adding hollow spheres was developed, and the resulting porous ceramic was named as hollow spheres ceramic. Water soluble epoxy resin was used as a gel former in the gelcasting process of the Al2O3 hollow sphere and Al2O3 powder, the porous ceramic porosity varies from 22.3 to 60.1 %. The influence of amount of Al2O3 hollow sphere and sintering temperature on the microstructure, compressive strength and thermal conductivity were investigated. With an increasing amount of hollow sphere in the matrix, the porosity increases, which leads to decreased bulk density, compressive strength and thermal conductivity. The compressive strength of the porous ceramics has a power law relation with the porosity, and the calculated power law index is 4.5. The equations of the relationship between porosity and thermal conductivity of porous ceramics are proposed. The thermal conductivity of samples with 60.1 % porosity is as low as 2.1 W/m k at room temperature.  相似文献   

20.
This paper examines a new technique for the preparation of porous scaffolds by combining selective polymer leaching in a co-continuous blend and salt particulate leaching. In the first step of this technique, a co-continuous blend of two biodegradable polymers, poly(ε-caprolactone) (PCL) and polyethylene oxide (PEO), and a certain amount of sodium chloride salt particles are melt blended using a twin screw extruder. Subsequently, extraction of the continuous PEO and mineral salts using water as a selective solvent yields a highly porous PCL scaffold with fully interconnected pores. Since, the salt particles and the co-continuous polymer blend morphology lead to very different pore sizes, a particular feature of this technique is the creation of a bimodal pore size distribution. Scanning electron microscopy, mercury intrusion porosimetry and laser diffraction particle size analysis were carried out to characterize the pore morphology. The prepared scaffolds have relatively homogeneous pore structure throughout the matrix and the porosity can be controlled between 75% and about 88% by altering the initial volume fraction of salt particles and to a lesser extent by changing the PCL/PEO composition ratio. Compared to the conventional salt leaching technique and to its different variants, the proposed process allows a better interconnection between the large pores left by the salt leaching and a fully interconnected porous structure resulting from the selective polymer leaching. The average compressive modulus of the different porous scaffolds was found to decrease from 5.2 MPa to about 1 MPa with increasing porosity, according to a power-law relationship. Since, the blending and molding of the scaffold (prior to leaching) can be made using conventional polymer processing equipment, this process seems very promising for a large scale production of porous scaffold of many sizes and in an economic way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号