首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, hot-pressing of equimolecular mixtures of α- and β-Si3N4 was performed with addition of different amounts of sintering additives selected in the ZrO2–Al2O3 system. Phase composition and microstructure of the hot-pressed samples was investigated. Densification behavior, mechanical and thermal properties were studied and explained based on the microstructure and phase composition. The optimum mixture from the ZrO2–Al2O3 system for hot-pressing of silicon nitride to give high density materials was determined. Near fully dense silicon nitride materials were obtained only with the additions of zirconia and alumina. The liquid phase formed in the zirconia and alumina mixtures is important for effective hot-pressing. Based on these results, we conclude that pure zirconia is not an effective sintering additive. Selected mechanical and thermal properties of these materials are also presented. Hot-pressed Si3N4 ceramics, using mixtures from of ZrO2/Al2O3 as additives, gave fracture toughness, KIC, in the range of 3.7–6.2 MPa m1/2 and Vicker hardness values in the range of 6–12 GPa. These properties compare well with currently available high performance silicon nitride ceramics. We also report on interesting thermal expansion behavior of these materials including negative thermal expansion coefficients for a few compositions.  相似文献   

2.
Bi2O3·2B2O3 glasses doped with La2O3 and Er2O3 were prepared by the melting-quenching method with AR-grade oxides. IR analysis was used to investigate the glass network structure. The characteristic temperatures including the glass transition temperature (Tg), crystallization temperature (Tp), and melting temperature (Tm) were estimated by DSC. The coefficient of thermal expansion (α), mass density (D), and Vickers hardness (Hv) were also measured. The results show that the basic network structure of Bi2O3·2B2O3 glasses doped with rare-earth oxides consists of chains composed of [BO3], [BO4], and [BiO6] units. La2O3 and Er2O3 act as network modifiers. As the doping concentrations of the rare-earth oxides were increased, Tg increased and α decreased, indicating that a more rigid glass was obtained. Er2O3 reduces the melting temperature and prevents glass crystallization. La2O3 contributes to the improvement of the microhardness of Bi2O3·2B2O3 glass.  相似文献   

3.
A simple process has been investigated to synthesize nanocrystalline Ba0.70Sr0.30TiO3 (BST) powders via a nonhydrolytic sol–gel method by using barium acetate, strontium acetate, titanium tetrabutoxide, ethanol, acetic acid and acetylacetone as the starting materials. Thermogravimetry (TG) and differential thermal analysis (DTA) were used to examine the decomposition behaviour of the xerogel. The particle size of BST is close to 30 nm calculated by X-ray diffraction (XRD) and confirmed by transmission electron microscopy (TEM). Using these nanocrystalline BST powders, dense BST ceramics with ultrafine grains were obtained by spark plasma sintering (SPS). The grain size effect on the dielectric properties was studied. It was shown that as the grain size decreased, the transition temperature (Tc) and the dielectric constant decreased and the transition became diffuse.  相似文献   

4.
Different types of dense 5–97% ZrO2–MgAl2O4 composites have been prepared using a MgAl2O4 spinel obtained by calcining a stoichiometric mixture of aluminium tri-hydroxide and caustic MgO at 1300 °C for 1 h, and a commercial yttria partially stabilized zirconia (YPSZ) powder as starting raw materials by sintering at various temperatures ranging from 1500 to 1650 °C for 2 h. The characteristics of the MgAl2O4 spinel, the YPSZ powder and the various sintered products were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area, particle size analysis, Archimedes principle, and Vickers indentation method. Characterization results revealed that the YPSZ addition increases the sintering ability, fracture toughness and hardness of MgAl2O4 spinel, whereas, the MgAl2O4 spinel hampered the sintering ability of YPSZ when sintered at elevated temperatures. A 20-wt.% YPSZ was found to be sufficient to increase the hardness and fracture toughness of MgAl2O4 spinel from 406 to 1314 Hv and 2.5 to 3.45 MPa m1/2, respectively, when sintered at 1600 °C for 2 h.  相似文献   

5.
Nd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (abbreviated to BNKT) binary lead-free piezoelectric ceramics were synthesized by the conventional mixed-oxide method. The results show that the BNKT ceramics with 0–0.15 wt.% Nd2O3 doping possesses a single perovskite phase with rhombohedral structure. The grain size of BNKT decreased with the addition of Nd2O3 dopant. The temperature dependence of the dielectric constant ?r revealed that there were two-phase transitions from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric. A diffuse character was proved by linear fitting of the modified Curie–Weiss law. At room temperature, the specimens containing 0.0125 wt.% Nd2O3 with homogeneous microstructure presented excellent electrical properties: the piezoelectric constant d33 = 134 pC/N, the electromechanical coupling factor Kp = 0.27, and the dielectric constant ?r = 925 (1 kHz).  相似文献   

6.
The perovskite proton conductor BaZr0.9Y0.1O2.95 (BZY10) shows better chemical stability but lower conductivity than BaCe0.9Y0.1O2.95 (BCY10). In this paper we attempted to synthesize BCY10:BZY10 core–shell materials in which BCY10 particles prepared by solid reaction were wrapped by a sol–gel deposited thin layer of BZY10 with ZnO as sintering aid to improve the sinterability of the materials. The effects of the BCY10/BZY10 ratios on the phase purity, microstructure, chemical stability and electrical conductivity of the samples were characterized by XRD, TEM, SEM, TGA and electrochemical impedance spectroscopy. A dense core–shell structure was formed after being sintered at 1300 °C for 10 h. The core–shell samples displayed improved stability against CO2 and water vapor at high temperature. With BCY10/BZY10 ratio varying from 9:1 to 7:3, the core–shell samples became more stable, and the total conductivities decreased.  相似文献   

7.
SiC or Al2O3 microsized particles were added to acid sulfate-based solutions for the electrodeposition of Zn, Co, and ZnCo. Initially, their effects on the electrochemical processes were evaluated. The Zn electrodeposition rate was increased in both SiC and Al2O3-loaded solutions. The Co electrodeposition rate was also increased by SiC. However, Al2O3 decreased it, especially at the beginning. Both SiC and Al2O3 influenced the electrodeposition of ZnCo positively at moderate loadings. The factors involved in producing ZnCo–SiC and ZnCo–Al2O3 composites were evaluated. ZnCo–SiC composites could be deposited with a higher [Co/Zn] ratio in the metal matrix than for pure ZnCo. In ZnCo–Al2O3, the [Co/Zn] ratio was smaller than in ZnCo and ZnCo–SiC. It was necessary to reduce the CoSO4 concentration to improve the Al2O3 co-deposition. The variation in [Co/Zn] ratio could, in principle, be related to the effects of SiC and Al2O3 on the individual Zn and Co electrodeposition.  相似文献   

8.
In this paper an XRD, FTIR and TPD investigation of NO2 surface adsorption sites of , Al2O3 and barium supported , Al2O3 is reported. Aim of this study is to bring additional light on the surface structures involved in NOx adsorption. Two samples of barium supported aluminas have been prepared and aged at 800 °C. These samples were characterised in comparison with the relative alumina support. The XRD characterisation of these samples shows the presence of barium carbonate and barium aluminate supported on alumina. The comparison of the FTIR spectra, before and after NO2 adsorption, has revealed the formation, upon NO2 contact, of a complex variety of nitrate and nitrite groups. The thermal desorption of nitrate and nitrite species has been simultaneously studied by means of FTIR spectroscopy and by TPD technique. By comparing the structural, adsorptive and spectroscopic results obtained on alumina and on barium supported alumina samples, a hypothesis on the basic sites active in NO2 adsorption and of the possible decomposition paths induced by thermal heating are proposed.  相似文献   

9.
Lithium λ-MnO2 ion-sieves were prepared from spinel LiMn2O4 via treatment with nitric acid. The LiMn2O4 was synthesized by a solid state reaction between LiOH·H2O and MnO2. The effects of the calcination time and temperature on the preparation of the LiMn2O4 precursor and the lithium ion-sieve were investigated. In addition, the Li+ extraction ratio, the Mn2+ dissolving ratio and the adsorption properties of the lithium ion-sieve were all measured. The lithium ion-sieve had a high exchange capacity and was selective for Li+. Specifically, at pH= 13, the ion exchange capacity of Li+ was 30.9 mg/g in 10 mmol/L LiCl solution and the lithium extraction ratio and manganese dissolving ratio were 95% and 25%, respectively.  相似文献   

10.
Yidong Hou 《Powder Technology》2010,203(3):440-160
Nanostructured β-Ga2O3 samples were prepared by a combination of the solvothermal processes and subsequent heat treatments. β-Ga2O3 samples with various morphologies were obtained by using different kinds of solvent, including water, isopropanol and ethylene glycol. One-dimensional β-Ga2O3 nanorods were obtained in water medium, while β-Ga2O3 spheres were prepared in alcohol. The possible mechanism related to the phase formation and morphology of the as-prepared materials was discussed. Photocatalytic performance of the synthesized β-Ga2O3 samples was also examined. Results revealed that β-Ga2O3 sample prepared with ethylene glycol showed the highest photocatalytic activity for the degradation of salicylic acid. This could be ascribed to the high surface area, abundant hydroxyl groups, and wide band gap of β-Ga2O3 sample synthesized in ethylene glycol.  相似文献   

11.
Adding Na2CO3 to the NaHCO3cooling crystallizer, using the common ion effect to promote crystallization and improve product morphology, is a new process recently proposed in the literature. However, the mechanism of the impact of Na2CO3 on the crystal morphology is still indeterminate. In this work, the crystallization of NaHCO3 in water and Na2CO3 –NaHCO3 aqueous solution was investigated by experiments and ...  相似文献   

12.
Composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and Ce0.9Gd0.1O1.95 (GDC) are investigated to assess for solid oxide fuel cell (SOFC) applications at relatively low operating temperatures (650–800 °C). LSCF with a high surface area of 55 m2g−1 is synthesized via a complex method involving inorganic nano-dispersants. The fuel cell performances of anode-supported SOFCs are characterized as a function of compositions of GDC with a surface area of 5 m2g−1. The SOFCs consist of the following: LSCF-GDC composites as a cathode, GDC as an interlayer, yttrium stabilized zirconia (YSZ) as an electrolyte, Ni-YSZ (50: 50 wt%) as an anode functional layer, and Ni-YSZ (50: 50 wt%) for support. The cathodes are prepared for 6LSCF-4GDC (60: 40 wt%), 5LSCF-5GDC (50: 50 wt%), and 4LSCF-6GDC (40: 60 wt%). The 5LSCF-5GDC cathode shows 1.29 Wcm−2, 0.97 Wcm−2, and 0.47 Wcm−2 at 780 °C, 730 °C, and 680 °C, respectively. The 6LSCF-4GDC shows 0.92 Wcm−2, 0.71 Wcm−2, and 0.54 Wcm−2 at 780 °C, 730 °C, and 680 °C, respectively. At 780 °C, the highest fuel cell performance is achieved by the 5LSCF-5GDC, while at 680 °C the 6LSCF-4GDC shows the highest performance. The best composition of the porous composite cathodes with LSCF (55 m2g−1) and GDC (5 m2g−1) needs to be considered with a function of temperature.  相似文献   

13.
xLi2O–(1−x)α-Fe2O3 (x=0.1, 0.3, 0.5, and 0.7) nanoparticle systems were successfully synthesized by mechanochemical activation of Li2O and α-Fe2O3 mixtures for 0–12 h of ball milling time. The study aims at exploring the formation of magnetic oxide semiconductors at the nanoscale, which is of crucial importance for catalysis, sensing and electrochemical applications. X-ray powder diffraction (XRD), Mössbauer spectroscopy and magnetic measurements were used to study the phase evolution of xLi2O–(1−x)α-Fe2O3 nanoparticle systems under the mechanochemical activation process. Rietveld refinement of the XRD patterns yielded the values of the particle size as function of composition and milling times and indicated the presence of Li-substituted hematite and tetra lithium iron oxide LiFeO2, along with the formation of multiple phases for large x values and long milling times. The Mössbauer studies showed that the spectrum of the mechanochemically activated composites evolved from a sextet for hematite to sextets and a doublet upon duration of the milling process with lithium oxide. Magnetic measurements recorded at 5 K to room temperature (RT) in an applied magnetic field of 50,000 Oe showed that the magnetization of the milled samples is larger at low temperatures than at RT and increases with decreasing particle size. Zero field cooling measurements made possible the determination of the blocking temperatures of the specimens as function of ball milling time and evidenced the occurrence of superparamagnetism in the studied samples. This result correlates well with the observed presence of a quadrupole-split doublet in the Mössbauer spectra.  相似文献   

14.
In this paper, Mn0.3?xMgxCu0.2Zn0.5Fe3O4 (x?=?0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) nanoparticles were prepared by the nitrate-citrate technique at low temperature. The structural, microstructural, magnetic and elastic properties of the samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, Transmission electron microscopy, field emission-scanning electron microscopy and vibrating-sample magnetometer at room temperature. Rietveld refinement of the XRD patterns indicated the formation of the single phase cubic spinel structure (space group Fd-3m) without any detectable impurity phase in all the samples that also was confirmed by FTIR studies. The lattice parameter is found to increase non-monotonically with an increase in Mg ion concentration. Also, the bond lengths and bond angles (A and B sites) of the studied ferrites were calculated by the refining of the XRD data. The values of the crystallite size decrease with increasing micro-strain (and conversely) and both of them reach extremum at x?=?0.15. The low remanence and coercivity values confirmed the formation of the superparamagnetic ferrites nanoparticles. The saturation magnetization of the samples gradually grows with Mg substitution and reach extremum at x?=?0.15. Variation of saturation magnetization with Mg content can be mainly attributed to change of cation distribution, and Yafet-Kittel angle occurred between magnetic moments on B-site in the samples. The values of Young's modulus, Debye temperature, bulk modulus, rigidity modulus of the samples were determined by the values of elastic constant and wave velocities obtained from the force constants. The improvement of the elastic properties of sample x?=?0.05 could be explained regarding the smaller values of the lattice parameter (a), the bond length and angle and the smaller crystallite size.  相似文献   

15.
Effect of Pr–Ni substitution on structural and magnetic properties of Ca0.5Ba0.5−xPrxNiyFe12−yO19 (x=0.00–0.10 and y=0.00–1.00) prepared by the sol–gel auto combustion method were investigated. The XRD analysis confirmed the single phase M-type hexa-ferrite structure. The lattice parameters were found to increase as Pr–Ni content increases, which is attributed to the ionic size of the implicated cations. The Pr–Ni seems to be completely soluble in the lattice. Transmission electron microscopy reveals that the grain size decreases with increase of Pr–Ni substitution. The coercivity and remanent magnetization ranges from 1511 to 1925 (Oe) and 21.4 to 26.5 (emu/g), respectively. The coercivity values of all the samples fall in the range of M-type hexa-ferrites.  相似文献   

16.
Lead-free piezoelectric ceramics of (1 − x)(Bi0.5Na0.5)0.94Ba0.06TiO3xBa(Zr0.04Ti0.96)O3 (abbreviated as BNBT–BZT100x, wherein x from 0 to 10 mol%) were fabricated. We have studied effects of amount of BZT content on the electrical properties and microstructures. X-ray diffraction analysis indicates that a solid solution is formed when BZT diffuses into the BNBT lattice, and further the crystal structure of sintered hybrid changes from rhombohedral to tetragonal symmetry along with increasing BZT content. Piezoelectric property measurements reveal that the BNBT–BZT4 ceramics has the highest piezoelectric performance, for example, the piezoelectric constant d33 reaches to 167 pC/N and planar electromechanical coupling factor kp is up to 0.27. In addition, the effect of Bi2O3 on the electrical properties and microstructure of the BNBT–BZT4 ceramics have also been studied, and found that the doping of Bi enhances the piezoelectric properties of ceramics.  相似文献   

17.
Nanocrystalline Ce0.9Gd0.1O1.95 (GDC) powders are successfully prepared by an acetic–acrylic method using acrylic acid, cerium acetate and gadolinium acetate as the starting materials. The polymeric precursors are characterized by means of TG/DTA, XRD and FT-IR, and the resultant powders are characterized by XRF, BET, SEM and particle size distribution (PSD) analysis. It is shown that the morphology of the oxide particles is dependent on the preparation conditions such as molar ratio of acrylic acid to metallic ions (L/M) and the sort of surfactant. High purity, single phase, homogeneous, nanocrystalline GDC powders with slight aggregation are obtained using ethylene glycol as surfactant, L/M=0.5 and heat treatment above 600 °C. The low application amount and high effect of acrylic acid is attributed to the co-operation of carboxyl group and ethylenic bond. The electrical conductivity of the sintered GDC pellet is 0.053 Scm−1 in air at 750 °C. The present work indicates that the acetic–acrylic method is a relatively green method without any NOx to synthesize high performance GDC powders.  相似文献   

18.
The lack of phase equilibria relations and liquidus surface thermodynamic information for CaO-SiO2–5?wt%MgO-Al2O3-TiO2 system has seriously restricted the comprehensive utilization of the titanium resources. In present study, the phase equilibrium relationships were investigated for CaO-SiO2–5?wt%MgO-Al2O3-TiO2 phase diagram system at 1300?°C and 1400?°C using the high temperature equilibrium technique followed by X-Ray Fluoroscopy (XRF), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscope (EDX) analysis. In the composition range studied, the liquid phase, melilite solid solution phase and CaO·TiO2 phase were found. The two-phase equilibrium of liquid coexisting with CaO·TiO2 phase was intensively dicussed, and the spatial liquidus surfaces at 1300?°C, 1400?°C and 1450?°C (data from literatures only) for liquid coexisting with CaO·TiO2 phase were first constructed in CaO-SiO2–5?wt%MgO-Al2O3-TiO2 tetrahedral phase diagram, which can realize a visual understanding of the phase relation change trendency in 3-dimensional space.  相似文献   

19.
In order to obtain high-strength anorthite glass-ceramics, K2O–CaO–Al2O3–SiO2 quaternary glass and relevant glass-ceramics were prepared and investigated. The results show that anorthite along with kalsilite or leucite was precipitated from the parent glass. Kalsilite crystals were formed firstly and then converted into leucite through reacting with SiO2 in the glass phase. The morphology of the crystals was dependent on the heat-treatment temperature. Column crystals were transformed into fine granular grains when the sintering temperature changed from 900 °C to 1100 °C. The activation energy (Eα) and avrami constant (n) were also calculated as 463.81 KJ/mol and 3.74 respectively, indicating that bulk nucleation and three-dimensional crystal growth were the dominating mechanisms in the temperature range 1000–1100 °C. The maximum value of the flexural strength for the glass-ceramics containing leucite was 248 MPa and the coefficient of thermal expansion (CTE) was in the range 5.69~11.94×10−6 K−1. The leucite is the main reason for the high CTEs and high flexural strength of glass-ceramics.  相似文献   

20.
Dense Ce0.8Gd0.2O2−δ was sintered by pulsed current activated sintering (PCAS) within 6 min from Ce0.8Gd0.2O2−δ nanopowder prepared by co-precipitation method. Sintering was accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense Ce0.8Gd0.2O2−δ with relative density of up to 96.3% was produced under simultaneous application of an 80-MPa pressure and the pulsed current. The effects of Fe2O3 additions on the sintering behavior, ionic conductivities, and mechanical properties of the Ce0.8Gd0.2O2−δ were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号