首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Various zinc oxide nanostructures were synthesized using thermal decomposition of zinc acetate dihydrate in a single process. The characterization of samples using powder X-ray diffraction, scanning electron microscope and FT-IR measurements revealed that the pure phase of different morphologies such as nanoparticles, nanowires and nanodisks had been synthesized successfully. Surprisingly some synthesized ZnO nanostructures were dark gray. The results showed that the reason may have been related to the oxygen deficiency and strong asymmetric stretching mode of wurtzite ZnO nanostructure. Using such samples, the photodegradation of Methylene blue was performed by UV–vis absorption measurement and the effect of morphology on the photocatalytic properties of different ZnO nanostructures was examined. The results showed that the nanodisks had the best photocatalytic performance among the other morphologies. The reason was attributed to the presence of specific crystal planes such as (0001) facets in nanodisks which can improve their photocatalytic performance.  相似文献   

2.
Dumbbell-shaped ZnO microstructures have been successfully synthesized by a facile hydrothermal method using only Zn(NO3)2·6H2O and NH3·H2O as raw materials at 150 °C for 10 h. The results from X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) show that the prepared ZnO samples exhibit dumbbell-shaped morphology and hexagonal wurtzite structure. The length of ZnO dumbbells is about 5–20 μm, the diameters of the two ends and the middle part are about 1–5 μm and 0.5–3 μm, respectively. The dumbbell-shaped ZnO microstructures may be formed by self-assembly of ZnO nanorods with 1–5 μm in length and 100–200 nm in diameter. The photoluminescence (PL) spectrum of dumbbell-shaped ZnO microstructures at room temperature shows three emission peaks at about 362, 384 and 485 nm.  相似文献   

3.
ZnO nanoparticles (NPs) with rod, bullet and broom-like morphologies have been synthesized by the solvothermal method. Structural analysis revealed ZnO NPs to be of the single crystal wrutzite hexagonal structure. Their size and morphology were controlled by varying the polarity of solvents. The aspect ratio of ZnO NPs at the lower polarity was below 2, and their shape was like a bullet. When increasing the polarity of solvent, the aspect ratio also increases and the shape changes to a rod-like morphology. This process is very simple and scalable. In addition, it can be used for fundamental studies of the tunable morphology formation.  相似文献   

4.
ZnO nanopowders were synthesized by hydrothermal and solvothermal method by using CTAB as surfactant, and the effects of CTAB on the morphologies of ZnO nanopowders were investigated. The results showed that the presence of CTAB could greatly vary the shape of the ZnO crystals. ZnO nanorods were prepared from the hydrothermal system without CTAB and flowers-like ZnO nanostructures were produced from hydrothermal system with 0.4 M and 0.5 M CTAB. Low concentration of CTAB in ethanol was conducive to the formation of ZnO nanorods, but the concentration continued to increase, the morphology of sample transformed into hexagonal bipyramid, and then transformed into spherical. The synthesis mechanism of ZnO powders with different morphologies has been presented.  相似文献   

5.
Ag-doped ZnO nanoparticles with high and stable photocatalytic activity were prepared by polymer-assisted freeze-drying method with simple process and without organic solvents used. The structural morphology and optical properties of Ag-doped ZnO nanoparticles were characterized by X-ray Diffraction (XRD), Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and high resolution TEM (HRTEM) with energy dispersive X-ray spectroscopy, Ultraviolet-visible Diffuse Reflectance Spectroscopy (UV–vis DRS), X-ray Photoelectron Spectroscopy (XPS) and Fourier Transmission Infrared Spectroscopy (FTIR). Moreover, the thermoanalytical measurements (TGA–DTG) analysis is carried out for proper calcination temperature. XRD results show that Ag nanoparticles were successfully doped into ZnO lattice, and UV–vis DRS results indicate that the doped Ag nanoparticles result in ZnO exhibiting enhanced light trapping capability in the 400?nm and 600?nm range. The photocatalytic activity of Ag-doped ZnO was examined by analyzing the degradation of methyl orange (MO) and methylene blue (MB) dyes under UV light and solar light irradiation, and the results show that all Ag-doped ZnO nanoparticles exhibit better photocatalytic activity than those of pure ZnO nanoparticles at the same degradation conditions; especially the synthesized Ag-ZnO nanoparticles are easy to be recycled and have high photocatalytic stability. Based on the experimental results, the photocatalytic electron transfer path and the photocatalytic mechanism of Ag-ZnO nanoparticles under UV and solar irradiation conditions are explained and clarified.  相似文献   

6.
Pure and Sr2+ doped ZnO crystallites were successfully synthesized via a microwave hydrothermal method using Zn(NO3)2·6H2O and Sr(NO3)2·6H2O as source materials. The phase and microstructure of the as-prepared Zn1−xSrxO crystallites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ultraviolet–visible spectrum (UV–vis) and photochemical reaction instrument were used to analyze the photocatalytic properties of the particles. XRD results show that the diffraction peaks of the as-prepared Zn1−xSrxO crystallites shifted slightly toward lower 2θ angle with the increasing of Sr2+ doping concentration from 0% to 0.3%. The pure ZnO crystallites with lamellar structure are found transforming to a hexagonal columnar morphology with the increase of Sr2+ doping concentration. UV–vis analysis shows that the particles have a higher absorption in UV region with a slightly decreased of optical band (Eg) gap. The photocatalytic activity of Sr2+ doped ZnO crystallites was evaluated by the Rhodamine B (RhB) degradation in aqueous solution under visible-light irradiation. Compared with the pure ZnO particles, the photocatalytic properties of the Sr2+ doped ZnO crystallites are obviously improved. The photocatalysis experiment results demonstrate that the 0.1% Sr2+ doped ZnO exhibits the best photocatalytic activity for the degradation of Rhodamine B.  相似文献   

7.
The 1D ZnO nanorods (NR's) were grown with Zinc (Zn) ion precursor concentration variation on seed layer glass substrate by the low temperature hydrothermal method and utilized for nitrogen dioxide (NO2) gas sensing application. Zn ion precursor concentration varied as 0.02, 0.03, 0.04, 0.05 and 0.06 M and thin films were characterized for structural, morphological, optical, electrical, surface defect study and gas sensing properties. All the film showed dominant orientation along the (002) direction, the intensity of the peak vary with the length of the nanorods. SEM cross images confirmed that nanorods had vertical alignment perpendicular to the plane of the substrate surface. The PL intensity of oxygen vacancy related defects for prepared samples was found to be linearly proportional to gas sensing phenomena. This result in good agreement with the theoretical postulation that, oxygen vacancies plays the important role for adsorption sites to NO2 molecule. The gas sensing performance was studied as a function of operating temperature, Zn ion precursor concentration variation, and gas concentration. The maximum gas response is 113.32–100 ppm NO2 gas at 150 °C for 0.05 M sample out of all prepared samples. Additionally, ZnO thin film sensor has potential to detect NO2 as low as 5 ppm.  相似文献   

8.
The ZnO nanowire/multi-walled carbon nanotube (MWNT) nanocomposites have been successfully synthesized by one-step hydrothermal method using zinc chloride as Zn source. Their photocatalytic degradation performances on methylene blue and Rhodamine 6G have been investigated under UV irradiation. Experimental results show that the photocatalytic efficiency of the as-synthesized ZnO/MWNT nanocomposites is 3 times higher than that of pure ZnO nanowires. The enhanced photocatalytic activity is attributed to the fast transfer of photo-generated electrons from ZnO to MWNTs, leading to low recombination rate of photo-induced electron–hole pairs.  相似文献   

9.
In this article, we grew zinc oxide (ZnO) samples with different morphologies, e.g. film, nanowire and nanosheet, with electrochemical deposition (ECD) by controlling the precursor concentration and the growth mechanism was also discussed. The morphology influence on the photovoltaic conversion efficiency of the dye-sensitized solar cells (DSSC) assembled with different ZnO photoanodes was investigated by measuring current density–voltage (JV) curve, quantum efficiency (QE) spectrum and electrochemical impedance spectrum (EIS). It was found that the DSSC constructed with ZnO nanowire array as photoanode can absorb more dye, improve the photon utilization rate and provide rapid collection channels for the photoexcited carriers. Therefore, the photovoltaic conversion efficiency of ZnO nanowire DSSC was improved.  相似文献   

10.
By following a one-step, novel methodology, ZnO and Ag/ZnO heterostructures were successfully synthesized at room-temperature. This route is simple, effective, high yield (91%), environmentally friendly (green synthesis) and consists of a mechanically assisted metathesis reaction. The metathesis reaction used in this investigation showed two results: the in-situ generation of alkaline nitrates, LiNO3/NaNO3, and the direct crystallization of the desired Zn-based compounds in milling media; revealing a true mechanochemical synthesis of ZnO and Ag/ZnO (1.25, 2.50 and 4.50 mol% of Ag) heterostructures. Particles showed spherical-like morphologies and sizes smaller than 20 nm. The Ag/ZnO heterostructures exhibited higher photocatalytic activity than ZnO for degrading methylene blue (MB) dye. It was also shown that the presence of Ag (up to 1.25 mol%) nanoparticles (NPs) in ZnO accelerates the photodegradation reaction and then slows down with further increases in Ag contents. The 1.25-Ag/ZnO sample (10 mg) showed the highest photocatalytic activity (96%) for degrading MB (100 ml, 10 mg L?1) within 100 min under UV–Vis light irradiation (λ = 310 nm).  相似文献   

11.
The urchin-like ZnO superstructures have been directly prepared by the assistance of poly (acrylic acid) (PAA, Mw 5000) under a one-step solution-based process. X-ray diffraction (XRD) patterns indicate that the crystal structure of the special ZnO urchins is hexagonal. The results of Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) tests show that the urchins are composed of rods and the average aspect ratio of them is about 10 with a length of about 1.5 μm. Selected area electron diffraction (SAED) pattern reveals that the rods are single crystal in nature, which preferentially grow up along the 〈0001〉 direction. Furthermore, the sizes and aspect ratios of the rods can be easily controlled by regulating the concentration of ZnSO4 solution. It is believed that the process of crystallization, including nucleation and crystal growth, happens along PAA chains resulting in the production of rods and assembly of them into superstructures.  相似文献   

12.
Self-assembled 3D flower-like ZnO microstructures composed of nanosheets have been prepared on a large scale through a sol−gel-assisted hydrothermal method using Zn(NO3)2·6H2O, citric acid, and NaOH as raw materials. The product has been characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The optical properties of the product have been examined by room temperature photoluminescence (PL) measurements. A possible growth mechanism of the 3D flower-like ZnO is proposed based on the results of experiments carried out for different hydrothermal treatment times. Experiments at different hydrothermal treatment temperatures have also been carried out to investigate their effect on the final morphology of the ZnO. The photocatalytic activities of the as-prepared ZnO have been evaluated by photodegradation of Reactive Blue 14 (KGL) under ultraviolet (UV) irradiation. The experimental results demonstrated that self-assembled 3D flower-like ZnO composed of nanosheets could be obtained over a relatively broad temperature range (90−150 °C) after 17 h of hydrothermal treatment. All of the products showed good photocatalytic performance, with the degree of degradation of KGL exceeding 82% after 120 min. In particular, the sample prepared at 120 °C for 17 h exhibited superior photocatalytic activity to other ZnO samples and commercial ZnO, and it almost completely degraded a KGL solution within 40 min. The relationship between photocatalytic activity and the structure, surface defects, and surface areas of the samples is also discussed.  相似文献   

13.
Zinc oxide (ZnO) nanostructures of various morphologies were prepared using a microwave-assisted aqueous solution method. Herein, a comparative study between three different morphologies of ZnO nanostructures, namely nanoparticles (NPs), nanoflowers (NFs) and nanorods (NRs) has been reviewed and presented. The morphologies of the prepared powders have been studied using field effect scanning electron microscopy (FESEM). X-ray diffraction (XRD) results prove that ZnO nanorods have biggest crystallite size compared with nanoflowers and nanoparticles. The texture coefficient (Tc) of three morphologies has been calculated. The Tc changed with varying morphology. A comparative study of surfaces of NPs, NFs and NRs were investigated using X-ray photoelectron spectroscopy (XPS). The possible growth mechanisms of ZnO NPs, NFs and NRs have been described. The optical properties of the ZnO nanostructures of various morphologies have been investigated and showed that the biggest crystallite size of ZnO nanostructures has lowest band gap energy. The obtained results are in agreement with experimental and theoretical data of other researchers.  相似文献   

14.
利用水热法在不锈钢丝网上制备了氧化锌纳米线阵列,借助扫描电镜(SEM)对产物的形貌进行了表征,探讨了反应物浓度和反应时间对产物形貌的影响,并以橙黄Ⅱ为目标降解物,研究了不同生长条件下氧化锌纳米线阵列的光催化降解性能。研究结果表明:硝酸锌浓度和反应时间对氧化锌纳米线阵列的密度、长度、直径和晶形有重要影响,在硝酸锌浓度为0.1 mol/L、反应时间为6 h条件下,制得的氧化锌纳米线阵列具有较佳的光催化活性,多次循环实验结果表明其稳定性较高。另外,双层叠合的氧化锌纳米线的光催化降解性能优于单层氧化锌纳米线的实验结果,其不锈钢丝网的网状结构为制备多维纳米阵列和薄膜提供了一种新的研究思路。  相似文献   

15.
Rare earth-doped ZnO hierarchical micro/nanospheres were prepared by a facile chemical precipitation method and characterized by X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. The results showed that the as-synthesized products were well-crystalline and accumulated by large amount of interleaving nanosheets. It was also observed that the rare earth doping increased the visible light absorption ability of the catalysts and red shift for rare earth-doped ZnO products appeared when compared to pure ZnO. The photocatalytic studies revealed that all the rare earth-doped ZnO products exhibited excellent photocatalytic degradation of phenol compared with the pure ZnO and commercial TiO2 under visible light irradiation. Nd-doped ZnO had the highest photocatalytic activity among all of the rare earth-doped ZnO products studied. The optimal Nd content was 2.0 at% under visible light irradiation. The enhanced photocatalytic performance of rare earth-doped ZnO products can be attributed to the increase in the rate of separation of photogenerated electron–hole pairs and hydroxyl radicals generation ability as evidenced by photoluminescence spectra.  相似文献   

16.
Te-doped ZnO nanostructures were synthesized by an annealing (vapor–solid) process under ambient conditions, and characterized in terms of their morphological, structural, compositional and optical properties. The structural and morphological characterizations revealed that the synthesized nanostructures were well-defined multipods, needles and spherical particles, and possessed well-crystalline ZnO wurtzite hexagonal phase. Also, in the X-ray diffraction studies, the presence of a shift in the peak positions towards a lower angle, and a decrease in the intensity, with an increase in the Te concentration, as compared to the undoped ZnO, were observed. The chemical composition confirmed the presence of Te, in the case of multipod and needle morphologies. The effect of doping on the crystalline quality and optical properties was also investigated, by using photoluminescence (PL) and Raman spectrometers. The Raman results demonstrated that the doped ZnO nanostructures had a lower crystalline quality than the undoped ZnO. Moreover, the PL results showed a decrease in the band gap for the doped ZnO nanostructures, in comparison to the undoped ZnO. A possible growth mechanism was also proposed.  相似文献   

17.
以醋酸锌、硫脲为原料,采用简单的一步溶剂热法合成了花状Zn S微球,并分别在550、600和650℃下进行高温氧化处理,获得了Zn S/ZnO异质结构半导体材料。利用XRD、SEM、EDS、表面积分析仪、拉曼光谱仪和UV-Vis对材料的形貌、结构、比表面积和光学性质进行了测定,并以罗丹明B(Rh B)为模型污染物考察了样品的光催化性能。结果表明:原位合成的样品为立方相Zn S微球,经过550℃高温氧化1 h后,由于O原子的进入,生成少量ZnO,经过600℃高温氧化1 h后形成了Ⅱ型异质结构Zn S/ZnO,经过650℃高温氧化1 h后,样品基本上成为ZnO。随着高温氧化温度的升高,样品的禁带宽度整体呈下降趋势。光催化结果显示:Zn S/ZnO异质结构具备较优的光催化性能,紫外光照射40 min,Rh B降解率达到98.5%。  相似文献   

18.
《Ceramics International》2022,48(13):18238-18245
Zinc oxide nanorods, ZnO NRs, were synthesized on a clean glass and coated with graphene oxide (GO) using spray coating method to enhance the photocatalytic activity in wastewater treatment. The ZnO NRs were synthesized using the solution process synthesis that was optimized using Taguchi method. Several synthesis parameters have been optimized and studied to determine the best synthesis parameter to grow ZnO NRs for the photodegradation of organic contaminants. Field emission scanning electron microscopy (FESEM) with EDX, X-ray diffraction (XRD), Raman, ultraviolet visible near-infrared (UV-VIS-NIR), and photoluminescence (PL) spectroscopies were used to investigate the structural and optical properties of the produced nanorods. FESEM images revealed the vertical growth of ZnO NRs as well as layers of GO covering the ZnO NRs' top surface. The Raman study demonstrates the combination peak of GO and ZnO, hence proving the GO layer's successful coating. After the GO coating, decrease in the bandgap of the synthesized photocatalyst was detected by PL and UV–Vis absorption measurements. Under UVC exposure with treatment time of 6 h, the degradation of MB with ZnO NRs/GO photocatalyst reached a degradation percentage of 97.86%, which is greater than the degradation percentage achieved using pristine ZnO NRs, which is 93.28%. The results validated that the coating of GO enhances the photocatalytic activity of the host material, ZnO NRs.  相似文献   

19.
ABSTRACT: Since the photo-electric response and charge carriers transport can be influenced greatly by the density and spacing of the ZnO nanorod arrays, controlling of these geometric parameters precisely is highly desirable but rather challenging in practice. Here, we fabricated patterned ZnO nanorod arrays with different density and spacing distance on silicon (Si) substrate by electron beam lithography (EBL) method combined with the subsequent hydrothermal reaction process. By using the EBL method, patterned ZnO seed layers with different areas and spacing distances were obtained firstly. ZnO nanorod arrays with different density and various morphologies were obtained by the subsequent hydrothermal growth process. The combination of EBL and hydrothermal growth process was very attractive and made us could control the geometric parameters of ZnO nanorod arrays expediently. Finally, the vertical transport properties of the patterned ZnO nanorod arrays were investigated through the micro probe station equipment and the I-V measurement results indicated that back-to-back Schottky contacts with different barriers height were formed in dark conditions. Under UV light illumination, the patterned ZnO nanorod arrays showed a high UV light sensitivity, and the response ratio was about 104. The controllable fabrication of patterned ZnO nanorod arrays and understanding for their photo-electric transport properties were helpful to improve the performance of nanodevices based on them.  相似文献   

20.
《Ceramics International》2016,42(3):4406-4412
A novel ternary photocatalyst AgBr/ZnO/RGO, where AgBr/ZnO is supported on reduced graphene oxide, is synthesized via a facile hydrothermal–impregnation method. The resultant composite presents a lamellar structure with AgBr nanoparticles homogeneously dispersing on the surface. The photocatalytic experiment for methyl orange dye degradation under visible light irradiation shows that ternary composite AgBr/ZnO/RGO has an activity 12.8 times and 2.3 times higher than binary photocatalysts ZnO/RGO and AgBr/ZnO respectively. More importantly, the ternary composite also demonstrates a good photostability. Metallic Ag is produced during the photocatalytic process, which may serve as the electron transfer mediator in the vectorial Z-scheme transfer of photogenerated charge carriers at the interface of AgBr/ZnO/RGO. The effective separation of photogenerated electrons and holes was proposed to be responsible for the enhancement of visible light photoactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号