首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Dense and crack-free aluminum oxide films were fabricated by sol–gel spin-coating technology. Aluminum nitrate (Al(NO3)3.9H2O) was used as the precursor material. X-ray diffraction shows that the fabricated films are amorphous. X-ray photoelectron spectroscopy confirms that the thin films are alumina (Al2O3). Field-emission scanning electron microscopy images of the films reveal that the films are compact with a dense cross section. Dielectric measurements were carried out on samples with a metal–insulator–metal structure. The electrical characteristics of the films were affected by the thermal sintering temperature of the films. The leakage current density of the films decreases with the increase in the sintering temperature and increases with the increase in the measuring temperature. The leakage current shows a linear dependence on the voltage in the low-electric field-regime. The current density ascends to higher values due to the effect of space charges in the high-electric-field regime. The ionization energy of the top-electrode metals (Au, Pt or Ti–Au) has a strong effect on the leakage current.  相似文献   

2.
We have employed KrF excimer laser annealing (ELA) treatment on sol–gel derived indium–zinc oxide (IZO) precursor films to develop a method of low thermal-budget processing. As-coated IZO sol–gel film was dried at 150 °C and then annealed using KrF excimer laser irradiation under ambient air. The laser irradiation energy density was adjusted to 150, 250, 350, and 450 mJ/cm2 to investigate the effects of laser irradiation energy density on the microstructure, surface morphology, optical transmittance, and electrical properties of laser annealed IZO thin films. Results of GIXRD and TEM-SAED indicated that the ELA IZO thin films had an amorphous phase structure. The surface characteristics and electrical properties of laser annealed IZO thin films were significantly affected by the laser irradiation energy density. It was found that the dried IZO sol–gel films irradiated with a laser energy density of 350 mJ/cm2 exhibited the flattest surface, the highest average optical transmittance in the visible region, and the best electrical properties among all ELA samples.  相似文献   

3.
The complex perovskite oxide Ba(Zn1/3Nb2/3)O3 (BZN) has been studied for its attractive dielectric properties which place this material interesting for applications as multilayer ceramics capacitors or hyperfrequency resonators. This material is sinterable at low temperature with combined glass phase–lithium salt additions, and exhibits, at 1 MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 2 wt.% of ZnO–SiO2–B2O3 glass phase and 1 wt.% of LiF-added BZN sample sintered at 900 °C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant ?r of 39, low dielectrics losses (tan(δ) < 10−3) and a temperature coefficient of permittivity τ? of 45 ppm/°C−1. The 2 wt.% ZnO–SiO2–B2O3 glass phase and 1 wt.% of B2O3-added BZN sintered at 930 °C exhibits also attractive dielectric properties (?r = 38, tan(δ) < 10−3) and it is more interesting in terms of temperature coefficient of the permittivity (τ? = −5 ppm/°C). Their good dielectric properties and their compatibility with Ag electrodes, make these ceramics suitable for L.T.C.C applications.  相似文献   

4.
Two series of polyaniline–TiO2 nanocomposite materials were prepared in base form by in situ polymerization of aniline with inorganic fillers using TiO2 nanoparticles (P25) and TiO2 colloids (Hombikat), respectively. The effect of particle sizes and contents of TiO2 materials on their dielectric properties was evaluated. The as-synthesized polyaniline–TiO2 nanocomposite materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal analysis (DTA/TGA), and X-ray diffraction (XRD). Dielectric properties of polyaniline–TiO2 nanocomposites in the form of films were measured at 1 KHz–1 MHz and a temperature range of 35–150 °C. Higher dielectric constants and dielectric losses of polyaniline–TiO2 nanocomposites than those of neat PANI were found. PANI–TiO2 nanocomposites derived from P25 exhibited higher dielectric constants and losses than those from Hombikat TiO2 colloids. Electrical conductivity measurements indicate that the conductivity of nanocomposites is increased with TiO2 content. The dielectric properties and conductivities are considered to be enhanced due to the addition of TiO2, which might induce the formation of a more efficient network for charge transport in the base polyaniline matrix.  相似文献   

5.
p-Type and n-type Cu2O thin films were controllably prepared using a simple solvothermal method by adjusting pH value of the copper (II) acetate aqueous solution. Photoelectrochemical experiments show that the Cu2O thin films synthesized in acid and alkaline (or neutral) media present n-type and p-type semiconductor character, respectively. Moreover, the films prepared at pH 5 have the best photoelectrochemical properties. The mechanism for the formation of these p-type and n-type Cu2O films is discussed. The Cu2O p–n homojunction fabricated in this study shows typical p–n junction character. This facile preparation method may be a promising way to prepare p–n homojunctions for semiconductor devices.  相似文献   

6.
CaCu3Ti4O12 (CCTO) powder has been prepared by a molten salt method using the NaCl–KCl mixture. Crystal structure and microstructure of the powder and the resulting ceramics have been characterized by using X-ray diffraction (XRD) and scanning electron microcopy (SEM). Impedance analyzer and current–voltage meter were employed to analyze dielectric and nonlinear (IV) properties of the CCTO ceramics with different sintering durations and subsequent cooling rates. The values of dielectric permittivity and nonlinear coefficient of the quenched sample were found to be higher than those of the slowly cooled sample. More specifically, the cooling methods (quenching and furnace-cooling) have allowed to adjust; (?) the breakdown voltage within a rather low range of 0.3–4.4 kV cm−1; (??) the nonlinear coefficient between 2 and 6 and (???) the giant dielectric permittivity for the ceramics within a range from 5000 to 20000. A double Schottky barrier can be evidenced from the linear behavior between the ln J and E1/2 in grain boundary regions. The relationship between the electrical current density and the applied electrical field indicates that the potential barrier height ΦB is holding time dependent.  相似文献   

7.
Al2O3/Ni nanocomposites were prepared by spark plasma sintering (SPS) using reaction sintering method and the mechanical properties of the obtained nanocomposites are reported. The starting materials of Al2O3–NiO solid solution were synthesized from aluminum sulfate and nickel sulfate. These Al2O3–NiO powders were changed into Al2O3 and Ni phases during sintering process. The obtained nanocomposites showed high relative densities (>98%). SEM micrographs showed homogeneously dispersed Ni grains in the matrix. The 3-point strength and the fracture toughness of the composites significantly improved from 450 MPa in the monolithic α-Al2O3 to 766 MPa in the 10 mol% (2.8 vol.%) Ni nanocomposite and from 3.7 to 5.6 MPa m1/2 in 13 mol% (3.7 vol.%) Ni nanocomposite. On the other hand, Young's modulus and Vickers hardness of the nanocomposites were mostly same as those of the monolithic α-Al2O3.  相似文献   

8.
Crystalline CuF2 thin films were prepared by pulsed laser deposition under room temperature. The physical and electrochemical properties of the as-deposited thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic cycling and cyclic voltammetry (CV). Reversible capacity of 544 mAh g−1 was achieved in the potential range of 1.0–4.0 V. A reversible couple of redox peaks at 3.0 V and 3.7 V was firstly observed. By using ex situ XRD and TEM techniques, an insertion process followed by a fully conversion reaction to Cu and LiF was revealed in the lithium electrochemical reaction of CuF2 thin film electrode. The reversible insertion reaction above 2.8 V could provide a capacity of about 125 mAh g−1, which makes CuF2 a potential cathode material for rechargeable lithium batteries.  相似文献   

9.
Optical and photoelectrochemical (PEC) properties of a TiO2 thin film electrode doped with a new variation of ruthenium–(4,4′dimethyl-2,2′-bipyridine)–isothiocyanato–tungsten[bis-(phenyl-1,2-ethilenodithiolenic)] bimetallic complex (BM) were investigated. Physical adsorption process was used to immobilise the BM on the TiO2 thin film. Crystalline structure and surface morphology of the thin films were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) techniques. N3 commercial dye was also used as a dopant to the TiO2 films for comparison. Light absorption spectra and bandgap energy of the thin films were determined using UV–vis spectroscopy. Light absorption of the TiO2 thin film doped with BM was better than the TiO2 doped with the N3 commercial dye. Band edges of the TiO2 thin film and the BM were determined via cyclic voltammetry (CV) measurements. Top-edge of the BM valence band (VB) was more positive than the bottom edge of the conduction band (CB) of the TiO2 film (vs. NHE). PEC analysis indicated that photocurrent of TiO2 doped with the BM electrode was higher than TiO2 doped with the N3 in the beginning of illumination process, but the performance was defeated after a while. Based on the optical properties and the PEC analyses, BM has potential to be used as dye sensitisers for a PEC cell.  相似文献   

10.
In this study, Cr2O3 green pigments were prepared using two types of CrOOH, α-CrOOH and γ-CrOOH, and the resulting pigments were characterised. The thermal decomposition behaviours of the two types of synthesised CrOOH were discussed. The resulting Cr2O3 pigments were characterised using X-ray diffraction (XRD), scanning electron microscope (SEM), International Commission on Illumination (CIE-L?a?b?) and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The key factors and mechanism that influenced the preparation of the Cr2O3 green pigments were studied. The results revealed that γ-CrOOH produces Cr2O3 that is more homogeneous, has a uniform size of 200–400 nm and a yellowish-green colour compared to α-CrOOH, which produces Cr2O3 with non-uniform sizes and a brownish-green colour. In addition to the different particle morphologies and sizes, the change in the crystal field, which leads to a shift in the 4A2g4T1g and 4A2g2T2g transition, also affects the colour of the pigment. Lastly, a series of Cr2O3 green pigments displaying a wide range of colours were prepared by calcining mixtures of α-CrOOH and γ-CrOOH with different compositions.  相似文献   

11.
a-Axis- and c-axis-oriented YBa2Cu3O7–δ (YBCO) films were grown on (100) SrTiO3 substrate by laser chemical vapour deposition (laser CVD). The effect of lattice mismatch between films and substrates on in-plane and out-of-plane crystallinity and critical temperature (TC) was investigated. The preferred orientation changed from a-axis to c-axis as the deposition temperature increased from 928 to 1049 K. The c-axis-oriented YBCO showed a minimum of full width at half maximum of 0.5° for the ω-scan and 1.0° for the φ-scan. A smaller mismatch between YBCO films and substrates led a higher crystallinity for in-plane and out-of-plane epitaxial growths. A high TC of 90 K was obtained for the c-axis-oriented YBCO films. The deposition rate of the YBCO films was 58–101 μm h−1, approximately 60–1000 times higher than that of conventional CVD.  相似文献   

12.
《Ceramics International》2022,48(9):12317-12323
Transparent conductive oxide (TCO) films have important applications in many areas. Unfortunately, TCOs are usually fabricated using vacuum and high-temperature methods, preventing them from applications in low-cost flexible devices. In this paper, facile low-temperature sol-gel method is described that can be used to fabricate high-quality TCO films. This study uses lightwave (LW) irradiation (at ~280 °C) with indium-tin-oxide (ITO) as a typical example. Both structure and key properties of ITO films are investigated for different LW irradiation conditions. ITO can be formed via LW irradiation after a period as short as 5 min. Furthermore, it is found that LW irradiation can promote the formation of M ? O framework, effectively remove Cl impurities, and facilitate the elimination of hydroxyl oxygen defects - even at temperatures as low as ~280 °C. The optimal ITO films show excellent electronic properties, including low sheet-resistance (14.5 Ω·sq?1) and high conductivity (1.7 × 103 S cm?1). Moreover, ITO films also show high transmittance (above 87%). Overall, our ITO films have a figure of merit (FOM) of 1.72 × 10?2 Ω?1, which is comparable to (or higher than) those of previous ITO films that were produced using conventional vacuum and high-temperature methods. Our LW irradiation method provides facile and effective approach to produce high-performance TCO films at remarkably low cost. This means these films could be used in affordable flexible large-area devices.  相似文献   

13.
Composite films of poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes (PEDOT–MWCNT) were fabricated by a simple oxidative electropolymerization method. These films were formed on fluorine-doped, tin oxide, glass substrates as counter electrodes (CEs) of platinum-free, dye-sensitized solar cells (DSSCs). The surface morphology, formation mechanism and electrochemical nature of PEDOT–MWCNT films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and alternating current (AC) impedance spectroscopy. The SEM and AFM images showed that PEDOT–MWCNT films were more porous than PEDOT films. CV and AC impedance spectroscopy revealed that the PEDOT–MWCNT electrode had higher electrocatalytic activity for the I3/I redox reaction and a smaller charge transfer resistance than the PEDOT electrodes. The energy conversion efficiency of the DSSC with a PEDOT–MWCNT CE was 13.0% higher than with a PEDOT CE using the same conditions with a ruthenium sensitizer.  相似文献   

14.
The present work focuses on the investigation of the effect of the different crystallographic orientation of titanium grains on the formation of anodic oxide films and consequently their dielectric and semiconductive properties. By using a microcapillary cell the formation process and the electrochemical impedance spectroscopy (EIS) can be performed at high lateral resolution on variously orientated single grains of polycrystalline titanium. The oxide films were potentiodynamically formed by cyclovoltammetry. EIS measurements immediately followed by the oxide formation were used for a detailed investigation of the film properties, in particular, the relative permittivity ?r and the donor concentration ND. In contrast to the most publications it was found that under the chosen conditions the crystallographic orientation of titanium substrate has no significant influence on the oxide thickness d, the relative permittivity ?r or on the donor concentration ND of the oxide films. The relative permittivity ?r is approximately 50. The donor concentration depends on the film thickness and amounts to approximately 3 × 1018 cm−3 in minimum.  相似文献   

15.
Nanostructural TiO2 films with large surface areas were prepared by the combined process of graft polymerization and sol–gel for use in dye-sensitized solar cells (DSSCs). The surface of the TiO2 nanoparticles was first graft polymerized with photodegradable poly(methyl methacrylate) (PMMA) via atom transfer radical polymerization (ATRP), after which the particles were deposited onto a conducting glass. The PMMA chains were removed from the TiO2 films by UV irradiation to generate secondary pores, into which titanium isopropoxide (TTIP) was infiltrated. The TTIP was then converted into small TiO2 particles by calcination at 450 °C, as characterized by energy-filtering transmission electron microscopy (EF-TEM) and field emission scanning electron microscopy (FE-SEM). The nanostructural TiO2 films were used as a photoelectrode in solid-state DSSCs; the energy conversion efficiency was 5.1% at 100 mW/cm2, which was higher than the values achieved by the pristine TiO2 (3.8%) and nongrafted TiO2/TTIP photoelectrodes (3.3%). This performance enhancement is primarily due to the increased surface area and pore volume of TiO2 films, as revealed by the N2 adsorption–desorption isotherm.  相似文献   

16.
Pure polycrystalline Bi1−xSmxFeO3 (BSFO) (x=0–0.12) thin films were successfully prepared on FTO/glass substrates by the sol–gel method. The influence of Sm doping on the structure, dielectric, leakage current, ferroelectric and ferromagnetic properties of the BSFO films was investigated. X-ray diffraction analysis and FE-SEM images both reveal a gradual rhombohedra to pseudo-tetragonal phase transition with the increase of Sm dopant content. On one hand, a proper amount of Sm doping can decrease the leakage current densities of the BSFO thin films. On the other hand, excess Sm substitution for Bi will lead to multiphase coexistence in the film, the lattice inhomogeneity results in more defects in the film, which can increase the leakage current density. The result shows that defects in the complexes lead to electric domain back-switching in the BSFOx=0.06 thin film, resulting in a decreased dielectric constant, leakage current and remanent polarization. The BSFOx=0.09 thin film is promising in practical application because of its highest dielectric constant, remanent polarization and remanent magnetization of 203–185, 70 μC/cm2 and 1.31 emu/cm3, respectively.  相似文献   

17.
In this paper the dielectric properties of crack‐free, Bi12SiO20 thin films were investigated. The films were prepared on Pt/TiO2/SiO2/Si and corundum substrates using the sol–gel method. The formation of a pure Bi12SiO20 phase was observed at a temperature of 700°C. The Bi12SiO20 thin films, heat treated at 700°C for 1 h, had a dense microstructure with an average roughness (Ra) of 50 nm. The dielectric properties of the film were characterized by using both low‐ and microwave‐frequency measurement techniques. The low‐frequency measurements were conducted with a parallel capacitor configuration. The dielectric constant and dielectric losses were 44 and 7.5 × 10?3, respectively. The thin‐film dielectric properties at the microwave frequency were measured using the split‐post, dielectric resonator method (15 GHz) and the planar capacitor configuration (1–5 GHz). The dielectric constant and the dielectric losses measured at 15 GHz were 40 and 17 × 10?3, respectively, while the dielectric constant and the dielectric losses measured with the planar capacitor configuration were 39 and 65 × 10?3, respectively.  相似文献   

18.
Titanium was allowed to diffuse into synthetic sapphire (α-Al2O3) at 1773–1923 K for 200 h in air. Specimens were prepared by four different methods. Samples were irradiated with a 10 MeV electron beam to fluencies of 2×1017 cm−2 for 1 h to induce vacancy formation. A 1-μm layer of titanium was sputtered onto sapphire samples to provide intimate contact with the diffusing elements. Ti diffusion was performed using TiO2 powder or a mixture of TiO2 and BeO powders in a ratio of 95:5 to take advantage of the beryllium activity. Ti diffusion was profiled using scanning electron microscope-energy dispersive X-ray spectrometry (SEM–EDX). The diffusion coefficients of Ti were as follows:  相似文献   

19.
An attempt was made to print cotton fabric with pigments using a new thickening agent based on Aloe vera gel in combination with sodium alginate. The results were compared with the standard conventional printing recipe containing synthetic thickener, and a favourable effect of Aloe vera introduction was achieved. The results show that the properties of the printed fabric (sharpness, colour yield, overall fastness properties, softness, and water vapour transmission) are dependent on the percentage of Aloe vera gel in the thickener combination, the concentration of printing auxiliaries, and the curing conditions. Optimal printing properties were achieved by using a printing paste containing 80% Aloe vera/20% sodium alginate (700 g kg?1), pigment (50 g kg?1), binder (145 g kg?1), fixer (10 g kg?1), and ammonium sulfate (5 g kg?1), followed by drying at 85 °C for 5 min and curing at 150 °C for 3 min. The sample printed with the new recipe showed superior rubbing fastness and handle properties, with a slightly lower colour yield, when compared with the sample printed with synthetic thickener. Finally, economic issues arising from synthetic thickener substitution are highlighted.  相似文献   

20.
Release kinetics of thymoquinone and R ‐(+)‐pulegone impregnated in low‐density polyethylene (LDPE) films into air and the effect of supercritical CO2‐assisted impregnation process on the diffusional properties of these films were investigated. The incorporation of both ketones into LDPE films was performed under different conditions (pressure, depressurization rate, time, and initial ketone mole fraction). Release experiments were performed under controlled laboratory conditions (24 °C, 60% relative humidity), and the total release profile was determined gravimetrically, while the individual release of each ketone was quantified by Fourier transformed infrared. The experimental data were used to fit a mass transfer model based on the second Fick's law for unsteady‐state diffusion, and the diffusion coefficients of both ketones in LDPE were estimated, ranging from 2.35 × 10?13 to 5.53 × 10?13 m2 s?1 (thymoquinone) and from 1.24 × 10?13 to 4.52 × 10?13 m2 s?1 (pulegone). Finally, analysis of variance testing indicated that impregnation pressure and depressurization rate (and their combination) have significant effects on the diffusion coefficient values. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45558.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号