首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ke Fan  Bo Chai  Ke Dai 《Electrochimica acta》2010,55(18):5239-5244
The dye-sensitized solar cells (DSSCs) using Ti foil supporting substrate for fabricating nanocrystalline TiO2 flexible film electrodes were developed, intending to improve the photoelectrochemical properties of flexible substrate-based DSSCs. The obtained cells were characterized by electrochemical impedance spectra (EIS), open circuit voltage decay (OCVD) measurement and Tafel plots. The experimental results indicate that the most important advantage of a Ti foil-based TiO2 flexible electrode over a FTO glass-based electrode lies in its reduced sheet resistance, electron traps, and the retarded back reaction of electrons with tri-iodine ions in DSSCs. All above characteristics for the Ti substrate TiO2 films are beneficial for decreasing the charge recombination in the TiO2 electrode and prolonging the electron lifetimes for the DSSCs, as well as improvement of the overall solar conversion efficiency. The photocurrent of the cell fabricated with the Ti foil-based flexible electrode increased significantly, leading to a much higher overall solar conversion efficiency of 5.45% at 100 mW/cm2 than the cell made with FTO glass-based TiO2 electrodes. Above results demonstrate that Ti foil is a potential alternative to the conventional FTO glass substrate for the DSSCs.  相似文献   

2.
In this study, hybrid silica-conjugated TiO2 photoelectrodes were developed in order to enhance the efficiency of a dye-sensitized solar cell. The relative changes in surface crystallite size and chemical surface states of TiO2 composites were investigated by XRD, XPS, and UV-vis spectroscopy. Therein, the chemical compositions of the nanostructured photoelectrode surfaces were observed to significantly change when the glass powder Si atoms became chemically bonded with the Ti atoms on the photoelectrode surface without appreciable changes to the crystalline structure of TiO2. Furthermore, a significant conversion of Si-Ox into Si-O at the surface of the photoelectrode was observed following the addition of glass powder, which confirms the covalent bonding of Si and Ti atoms into Ti-O-Si. A maximum cell efficiency (η from 5.8% to 8.5%) was observed when 2 wt% of the low-temperature glass powder was added to the TiO2 with a constant amount of dye loading. This observed peak in solar cell efficiently is most likely due to an increase in light harvesting, which is a result of an enhancement of light scattering and the coordination between Ti and Si to establish a Ti-O-Si bond.  相似文献   

3.
Electrophoretic deposition (EPD) method is employed to obtain mesoporous TiO2 film on a titanium (Ti) foil; the film is then mechanically compressed and sintered at 350 °C before being subjected to dyeing. A comprehensive study was made on the mechanistic aspects of the EPD process. The dye-sensitized solar cell (DSSC) using the thus formed TiO2 film rendered a power conversion efficiency (Eff.) of 6.5%. Effects of various compression pressures on the photovoltaic parameters and on other characteristic parameters of the pertinent DSSCs are studied. Electrochemical impedance spectroscopy (EIS) is applied for the first time, using a novel equivalent model, to study the impedance behavior of the DSSC with this type of TiO2 film. We also obtain characteristic parameters of the TiO2 photoanode by using EIS. The coordination number of the TiO2 film, and the ratio of charge transfer resistances of electron recombination and electron transport are also obtained and analyzed. Moreover, we employ a multilayer approach and increase the film thickness to prepare TiO2 films with the same coordination number and porosity; DSSCs using such TiO2 films obtained from P90 and P25 rendered efficiencies of 6.5% and 5.24%, respectively. Scanning electron microscopy (SEM) micrographs are obtained to characterize the TiO2 films formed by the EPD technique and laser-induced transient technique is used to estimate the electron lifetime in the TiO2 films.  相似文献   

4.
We prepared highly ordered titanium dioxide nanotube arrays (TNAs) by anodizing Ti foils in F containing electrolyte. The thickness and dye loading amount of TNAs were 26 μm and 1.06 × 10−7 mol cm−2, respectively. TiO2 nanoparticles (TNPs) were electrophoretically deposited on the inner wall of nanotube to produce coated nanotube arrays (TNAP). The dye loading was increased to 1.56 × 10−7 mol cm−2, and the electron transport rate improved. TNAs and TNAP were sensitized with ruthenium dye N3 to yield dye-sensitized TiO2 nanotube solar cells. The power conversion efficiency of TNA-based dye-sensitized solar cells (DSSCs) was 4.28%, whereas the efficiency of TNAP-based DSSCs increased to 6.28% when illuminated from the counter electrode. The increase of power conversion efficiency of TNAP-based DSSCs is ascribed to the increased surface area of TNAs and the faster electron transport rate.  相似文献   

5.
Dye-sensitized solar cells based on a tantalum (Ta)-doped TiO2 thin film prepared by the hydrothermal method show a photovoltaic efficiency of 8.18%, which is higher than that of the undoped TiO2 thin film (7.40%). The Mott-Schottky plot indicates that the Ta-doped TiO2 photoanode shifts the flat band potential positively and increases the electron density. The positive shift of the flat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2. Furthermore, the increased electron density caused by the Ta-doped TiO2 improves the fill factor of the solar cell. The increased electron density accelerates the transfer rate of electrons in the Ta-doped TiO2 thin films by comparison to undoped films, which is confirmed by intensity-modulated photocurrent spectroscopy measurements.  相似文献   

6.
We suggest a simple process to fabricate a hole-patterned TiO2 electrode for a solid-state dye-sensitized solar cell (DSSC) to enhance cell performance through interfacial properties of the electrode with the electrolyte with minimum dye loading. The method involves prepatterning of SU-8 photoresist on a conducting glass, followed by the deposition of a nanocrystalline TiO2 layer, calcination at 450 °C and characterization using scanning electron microscopy (SEM). Hole-patterned TiO2 photoelectrodes yielded better solar energy conversion efficiency per dye loading compared to a conventional non-patterned photoelectrode. For example, a 50 μm hole-patterned DSSC exhibited 4.50% conversion efficiency in the solid state, which is comparable to an unpatterned flat TiO2 photoelectrode (4.57%) however the efficiency per dye loading of the former (0.986%/g) was much greater than that of the latter (0.898%/g). The improvement was attributed to improved transmittance through the electrode as well as better interfacial properties between the electrolyte and electrode, as confirmed by UV-visible spectroscopy and electrochemical impedance (EIS) analysis.  相似文献   

7.
Electrochemical impedance spectroscopy (EIS) was used to understand the electrochemical mechanisms which appear in dye-sensitized solar cells (DSSCs). This qualitative and quantitative technique permits identification of the phenomena proceeding within the different elements composing the cell and at their interfaces.In this study, the classical conducting glass substrate was replaced by a protected stainless steel (304 type) substrate as the counter-electrode (cathode) in dye-sensitized solar cells. Platinum was deposited at the substrate surface to optimize the charge transfer resistance of the electrode.After a few days of immersion in the electrolytic solution, stainless steel substrates coated with low thickness of Pt show pitting corrosion due to iodine. Defects in the Pt layer such as discontinuity of the film and micro-cracks may explain the corrosion of the stainless steel substrate. However the Pt layer degradation is retarded for thicker films. On the other hand, polished substrates show a better behaviour probably due to the elimination of the defects on the stainless steel surface.Electrolytic solution was optimized. For this, components such as 1-butyl-3-methylimidazolium iodide (BMII), guanidine thiocyanate (GT) and 4-tert-butylpyridine (TBP) were added. No corrosion phenomena on stainless steel 304 appeared within 3 days when TBP was added. This means that TBP acts as a corrosion inhibitor.A schematic equivalent circuit is also proposed.  相似文献   

8.
A novel polyblend electrolyte consisting of KI and I2 dissolved in a blending polymer of polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) was prepared. The formation of I3 in the polymer electrolyte was confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Due to the coordinating and plasticizing effect by PVP, the ionic conductivity of the polyblend electrolyte is enhanced. The highest ionic conductivity of 1.85 mS cm−1 for the polyblend electrolyte was achieved by optimizing the compositions as 40 wt.% PVP + 60 wt.% PEG + 0.05 mmol g−1 I2 + 0.10 mmol g−1 KI. Based on the polyblend electrolyte, a DSSC with fill factor of 0.59, short-circuit density of 9.77 mA cm−2, open-circuit voltage of 698 mV and light-to-electricity conversion efficiency of 4.01% was obtained under AM 1.5 irradiation (100 mW cm−2).  相似文献   

9.
This paper reports the performance of dye-sensitized solar cells (DSSCs) with nanoporous TiO2 photoanodes irradiated by KrF excimer laser beams of various power densities. The laser induces surface remelting and solidification to create textures on the TiO2 layers. After laser irradiation, TiO2 also undergoes a phase transition from anatase to rutile; the amount of the transformed phase increases with the laser power density. For dye-anchored TiO2 layers, light absorption increases first and then decreases as the laser power density increases. The assembled cell efficiency, strongly correlated with the photocurrent density, also increases first and then decreases as the laser power density rises. This indicates that laser treatment creates surface textures on TiO2 that improve light trapping in the dye-anchored TiO2 photoanodes, thereby increasing the photocurrent level and cell efficiency. For high laser irradiation power density, the ablation of the TiO2 layer becomes significant, leading to a decrease in cell efficiency. The surface remelting and solidification process reduces the density of the surface recombination centers on TiO2, resulting in an increase of open-circuit voltage.  相似文献   

10.
Cr-doped blue TiO2 (Cr-BTiO2) nanoparticles were fabricated at room temperature using lithium-ethylenediamine (Li-EDA) as reducing agent. The addition of Li-EDA promotes the selective reduction of the rutile phase of TiO2 into the amorphous phase keeping anatase phase unaltered. Hence, the phase-selective reduction of TiO2 leads to the formation of blue TiO2 nanoparticles. Synthesized samples were characterized by equipment fitted with modern technology. The shifting of (101) peak to a lower angle (2θ) in Cr-BTiO2 in X-ray diffraction (XRD) pattern suggests the successful doping of chromium into TiO2 lattices. In Raman spectra, the shifting of the active Eg peak of Cr-BTiO2 nanoparticles to higher wavenumber also suggests the successful substitution of Ti by Cr. The blue TiO2 and Cr-BTiO2 show increased absorption of light in the visible region compared to TiO2 (P25). The modified TiO2 samples have improved electron-hole separation tendency as predicted by the photoluminescence spectra (PL). Also, doping of Cr- into TiO2 lattice results the formation of oxygen vacancy as detected by X-ray photoelectron spectroscopy (XPS). Among all samples, Cr-BTiO2 demonstrated improvement in Jsc and overall incident photon to current conversion efficiency. Therefore, the synthetic effect is thus responsible for the enhancement in efficiency of Cr-BTiO2 towards the dye-sensitized solar cell (DSSC) by 2.5 and 1.5 times higher than the P25 and blue TiO2, respectively.  相似文献   

11.
The photoelectrochemical properties of a high molar extinction coefficient charge transfer organic dye containing thienylfluorene segment called FL, and the effect of incorporating TiO2 nanotube (TiNT) in TiO2 nanoparticle film along with the above dye on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The influence of soaking time of the TiO2 electrode in dye solution and the effect of varying its concentration, on the solar cell efficiency was also studied. Cyclic voltammetric (CV) analysis revealed the linear relationship between the anodic peak current and the scan rate, indicating a surface-confined diffusion process.The surface morphology of TiNT was characterized using SEM, TEM and XRD. The open-circuit voltage (VOC) of the DSSC increased with the increase in the wt% of TiNT and shows optimal value at about 5 wt%, which is correlated with the suppression of the electron recombination as found out from the electron lifetime studies.The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the charge transport resistance (Rct) and electron lifetime under different ratios of the TiNT/nanoparticle. The electron lifetimes of the DSSCs based on FL and N3 dye were very close to one another and the DSSC based on the FL showed respectable photovoltaic performance of ca. 7.8% under the light intensity of 100 mW cm−2 (AM 1.5G).  相似文献   

12.
Three different types of nanocrystalline, N-doped TiO2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO2 solar cells also differed from those in the pure TiO2-based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films.  相似文献   

13.
In order to possess the merits of both building blocks, i.e. the rapid interfacial electron transport of TiO2-B narrow nanobelts (NBs) and the high surface area of TiO2 nanoparticles (NPs), the TiO2-B NBs and TiO2 NPs composites photoelectrodes were prepared with different weight ratios. The dye-sensitized solar cell prototypes were fabricated based on the composite photoelectrodes and the photoelectrical properties have been systematically studied. Although the amount of adsorption dye of composite solar cells decreased, the composite cells could obtain higher power conversion efficiency compared to pure TiO2 NP solar cell by rational tuning the weight ratio of TiO2-B NBs and TiO2 NPs, which was due to the faster electron transfer rate. The dye adsorption amount and interfacial electron transport, which together determined the overall photoelectrical conversion efficiency, were investigated by the UV–vis spectra, the electrochemical impedance spectra (EIS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS).  相似文献   

14.
Jingbo Zhang  Arie Zaban   《Electrochimica acta》2008,53(18):5670-5674
This work entails a method to improve the performance of dye-sensitized nanocrystalline TiO2 solar cells by adding surface passivating elements to the electrolyte. The presence of either CO2, Li2CO3 or K2CO3 in electrolyte increases both the photocurrent and the photovoltage, resulting in higher overall conversion efficiency of these solar cells. The additives are used to form a passivation layer of lithium carbonate on the dye free surface of the TiO2 nanoparticles and the conductive substrate. This layer suppresses the rate of the main recombination reaction between the photoinjected electrons and the oxidized ions in the electrolyte solution. While blocking part of the recombination, the lithium carbonate layer allows motion of the Li+ ions towards the TiO2 surface for charge screening. Consequently using this simple treatment, the conversion efficiency of dye-sensitized solar cell most improved by 17.2% (from 6.4% to 7.5%).  相似文献   

15.
Efficient transfer of charges from a counter electrode to an electrolyte is a key process during the operation of dye-sensitized solar cells. Here, we develop a flexible counter electrode by electrochemical deposition of polyaniline nanofibers on graphitized polyimide carbon films for use in a tri-iodide reduction. As determined by the electrochemical impedance spectroscopy, the flexible counter electrode exhibited very low charge transfer resistance and series resistance. These results are due to the high electrocatalytic activity of the polyaniline nanofibers and the high conductivity of the flexible graphitized polyimide film. In combination with a dye-sensitized TiO2 photoelectrode and electrolyte, the photovoltaic device with the polyaniline counter electrode shows an energy conversion efficiency of 6.85% under 1 sun illumination. Short-term stability tests indicate that the photovoltaic device with the polyaniline counter electrode almost maintains its initial performance.  相似文献   

16.
Niobium (Nb) and iron (Fe) co-doped titanium oxide nanobelts were prepared in a one-pot alkaline hydrothermal process followed by calcination treatment, and evaluated in TiO2 nanoparticle-based composite anodes for dye-sensitized solar cells. Addition of Nb and Fe species caused an increase in donor density and trap-mediated charge transition, as characterized by electrochemical and photoluminescence analyses. Under illumination with simulated solar light, the co-doped single-crystalline nanobelts promoted photocurrent yield and open-circuit voltage, because they facilitate electronic conduction and chemical capacitance in the composite anodes. This improved photovoltaic performance is associated with the enhanced charge collection efficiency, mechanistically attributed to rapid electron transport and prolonged electron lifetime via shallow trapping sites. Results demonstrate that the Nb and Fe co-doped titania nanobelts are effective to provide longer electron diffusion lengths and favor charge accumulation during cell operation.  相似文献   

17.
Photoelectrodes of mixed microsized TiO2 aggregates and individually dispersed TiO2 nanocrystallites with different ratios were fabricated and studied for improved power conversion efficiency in dye-sensitized solar cells (DSCs). TiO2 aggregates/nanocrystallites composites possess several advantages for high performance of DSCs, including the light scattering by the microsized TiO2 aggregates and the high surface area of nanocrystallites both in aggregates and individually dispersed. A high power conversion efficiency of 7.59% was achieved with mixed TiO2 aggregates/nanocrystallites photoelectrode using conventional dye N3, without applying anti-reflection coating, back-scattering layer, or chemical treatment. The electron transport properties of DSCs with mixed photoelectrodes were investigated by electrochemical impedance spectra, and the results showed that such a photoelectrode with mixed aggregates and nanocrystallites possess better connectivity for efficient electron transport.  相似文献   

18.
A series of organic sensitizers containing identical π-spacers and electron acceptors but different, aromatic amine electron-donating groups, were used in dye-sensitized solar cells to study the effect of the electron donating groups on device performance. The derived photophysical and photovoltaic properties, as well as density functional theory calculations, revealed that the tetrahydroquinoline dye was prone to aggregate upon the surface of titanium dioxide owing to the dye's planar structure. A 45% improvement in efficiency of a tetrahydroquinoline dye based cell was achieved when chenodeoxycholic acid was employed as co-adsorbent. However, the airscrew type of triphenylamine unit and Y type structure of the substituted phenothiazine framework suppressed dye aggregation on titanium dioxide. The efficiency of a phenothiazine dye-based cell fabricated using saturated co-adsorbent in dichloromethane was only 15% greater than that achieved in the absence of co-adsorbent. Electrochemical Impedance Spectroscopy was used to determine the interfacial charge transfer process occurring in solar cells that employed different dyes in both the absence and presence of chenodeoxycholic acid as co-adsorbent.  相似文献   

19.
A flexible dye-sensitized solar cell (DSSC) was fabricated using a photoanode consisting of an array of TiO2 nanotubes (TNT) filled with a nanocomposite of TiO2 (P90) and nanographite. The array of TNT was obtained by anodic oxidation of Ti foil, and this Ti foil with TNT was used as the photoanode of the DSSC. Each tube in the array has an average diameter of 100 nm. The morphologies of the array of TNT were obtained both after and before filling them with the TiO2/graphite nanocomposite, using a field-emission scanning electron microscopy (FE-SEM). DSSC with photoanode consisting of the nanocomposite (photoanode designated as Graphite/P90-TNT) rendered a light-to-electricity conversion efficiency (η) of 5.75%. In contrast, the cells with photoanodes consisting of only TNT (photoanode designated as TNT) and TNT filled with P90-TiO2 (photoanode designated as P90-TNT) exhibited efficiencies (η) of 4.44% and 5.14%, respectively. The enhancements in the η’s in favor of the cells with P90-TNT and Graphite/P90-TNT were attributed to the filled P90 and nanocomposite, respectively. The filled particles were assumed to provide more conductive pathways for electron transfer and prolonged lifetime for electrons in the film of TNT. The results were substantiated by light-absorption values, incident-photo-to-current efficiency (IPCE) curves, Nyquist and Bode plots of electrochemical impedance spectroscopy (EIS), and photopotential transient curves.  相似文献   

20.
Highly ordered, vertically oriented TiO2 nanowire arrays (TNAs) are synthesized directly on transparent conducting substrate by solvothermal procedure without any template. The X-ray diffraction (XRD) pattern shows that TiO2 array is in rutile phase growing along the (0 0 2) direction. The field-emission scanning electron microscopy (FE-SEM) images of the samples indicate that the TiO2 array surface morphology and orientation are highly dependent on the synthesis conditions. In a typical condition of solvothermal at 180 °C for 2 h, the TNAs are composed of nanowires 10 ± 2 nm in width, and several nanowires bunch together to form a larger secondary structure of 60 ± 10 nm wide. Dye-sensitized solar cell (DSSC) assembled with the TNAs grown on the FTO glass as photoanode under illumination of simulated AM 1.5G solar light (100 mW cm−2) achieves an overall photoelectric conversion efficiency of 1.64%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号