共查询到20条相似文献,搜索用时 15 毫秒
1.
La1−xCaxFeO3−δ solid solutions (x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) were investigated. The samples were prepared by the polymerizable complex route and characterized by X-ray diffraction and complex impedance spectroscopy techniques. Results reveal the formation of a single perovskite phase for the La1−xCaxFeO3−δ (0≤x≤0.5) compositions. However, the La0.4Ca0.6FeO3−δ sample is a mixture of many phases: perovskite, calcium ferrite and iron oxide. The unsubstituted lanthanum ferrite oxide, as well as the substituted samples, exhibits an orthorhombic symmetry. The direct current conductivity analyses reveal a typical negative temperature coefficient of the resistance behaviour for all the samples. The incorporation of calcium into the lanthanum ferrite lattice results in a significant improvement of the direct current conductivity. In fact, La0.8Ca0.2FeO3−δ oxide shows the optimal conduction value. For all the studied compositions, a change in the activation energy is highlighted around 440 °C. This behaviour is attributed to the antiferromagnetic to paramagnetic transition of lanthanum ferrite. As for the alternating current conductivity, it obeys the Jonsher's power law. The correlated barrier hopping model is proposed to describe the transport mechanism in the studied matrix. 相似文献
2.
Subsolidus pyrochlores with the proposed formula, Bi3+(5/2)xMg2−xNb3−(3/2)xO14−x (0.14≤x≤0.22) were successfully synthesised at the firing temperature of 1025 °C using conventional solid-state reaction. The excess Bi3+ charge was offset by removal of relative proportion of Mg2+ and Nb5+ together with creation of oxygen non-stoichiometry in order to preserve electroneutrality of the system. These samples were crystallised in cubic structure with space group of Fd3m, No. 227 and their refined lattice parameters were in the range of 10.5706 (3)–10.5797 (7) Å. The surface morphologies of the samples as confirmed by scanning electron microscopy analysis were of irregular shaped grains while their crystallite sizes of ~30–85 nm were calculated using the Scherrer equation and the Williamson–Hall method. No thermal event was discernable indicating these pyrochlores were thermally stable within a studied temperature range of ~30–1000 °C. The recorded dielectric constants of Bi3+(5/2)xMg2−xNb3−(3/2)xO14−x (0.14≤x≤0.22) subsolidus pyrochlores were generally above ~160 and their dielectric losses were in the order of 10−4–10−3 at the frequency of 1 MHz and temperature of ~30 °C. Meanwhile, these ceramic samples also exhibited negative temperature coefficient of relative permittivity between −528 and −742 ppm/°C in the temperature range of ~30–300 °C. 相似文献
3.
N. El Horr Z. Valdez-Nava C. TenailleauS. Guillemet-Fritsch 《Journal of the European Ceramic Society》2011,31(6):1087-1096
Nano-sized Ba1−xLaxTiO3 (0.00 ≤ x ≤ 0.14) powders were prepared by a coprecipitation method and calcined at 850 °C in air. The corresponding ceramics were obtained by Spark Plasma Sintering (SPS) at 1050 °C. These ceramics are oxygen deficient and are marked as Ba1−xLaxTiO3−δ. Both powders and ceramics were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The effect of lanthanum concentration on the densification behavior, on the structure and the microstructure of the oxides was investigated. Average grain sizes are comprised between 54 (3) nm and 27 (2) nm for powders, and 330 (11) nm and 36 (1) nm for ceramics according to the La-doping level. Powders crystallize in the cubic (or pseudo-cubic) perovskite phase. The structure of ceramics consists in a mixture of cubic (or pseudo-cubic) and tetragonal perovskite type phases. As the lanthanum content increases, the tetragonality of the samples decreases, as well as the grain size. 相似文献
4.
Effect of BiFeO3 (BFO) content on the microstructure and electrical properties of BaTi0.9Zr0.1O3 (BTZ) ceramics prepared by the solid-state reaction technique was investigated. X-ray diffraction analyses show that BFO diffused into the lattice of BTZ to form a solid solution with perovskite structure. The relative density of the BTZ ceramics is increased by the introduction of BFO. The dielectric study reveals that the dielectric constant and the average dielectric loss of the solid solution decreased simultaneously with an increase in BFO content. The materials undergo a diffuse type ferroelectric phase transition. The diffusivity increases with increase in BFO contents in the studied composition range. On the other hand, the piezoelectric coefficient and electromechanical coupling coefficient decrease simultaneously with increasing the BFO content, whereas the mechanical quality factor increases gradually. The structure–property relationship and the mechanism associated with the change of the electrical properties are discussed intensively. 相似文献
5.
Rob Hui Sing Yick Cyrille Decès-Petit Xinge Zhang Radenka Maric Dave Ghosh 《Electrochimica acta》2010,55(16):4772-96
Ba1−xPrxCo1−yFeyO3−δ (BPCF) perovskite oxides have been synthesized and investigated as cathode materials for low temperature solid oxide fuel cells (LT-SOFCs). Compared with those of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and Sm0.5Sr0.5CoO3 (SSCo) cathode materials, BPCF has a lower polarization resistance at decreased temperatures. In particular, Ba0.5Pr0.5Co0.8Fe0.2O3−δ showed the lowest polarization loss among the different compositions as a cathode material for LT-SOFCs. The area specific resistance (ASR) of Ba0.5Pr0.5Co0.8Fe0.2O3−δ as a cathode material is 0.70 and 0.185 Ω cm2 at 500 °C and 550 °C, respectively. The maximum power density of the cell BPCF/SDC/Ni-SDC with humidified hydrogen as fuel and air as oxidant reaches 860 mW cm−2 at 650 °C. 相似文献
6.
Haitao Gu 《Electrochimica acta》2009,54(13):3532-3537
Electrochemical properties of Co-doped Sr0.8Ce0.2MnO3−δ cathode were investigated at the cathode/Sm0.2Ce0.8O1.9 electrolyte interface. The electrochemical impedance spectroscopy was measured under applied cathodic voltages (E = −0.4 to 0 V). At E = 0 V, the area-specific resistance decreased from 2.20 Ω cm2 to 0.19 Ω cm2 at 700 °C with Co doping. Under the cathodic polarization, the rate determining step of oxygen reduction process was different for both cathodes: the charge transfer for Sr0.8Ce0.2MnO3−δ and the diffusion process for Sr0.8Ce0.2Mn0.8Co0.2O3−δ. Besides, the overpotential also decreased from 124 mV to 19 mV at the current density of 0.1 A cm−2 at 800 °C with Co doping. The improved electrochemical properties of Co-doped Sr0.8Ce0.2MnO3−δ can be ascribed to the formation of more oxygen vacancies and more active sites for oxygen reduction reaction. 相似文献
7.
In this paper effects of Ca and Mg substitution on oxygen sensing properties of hot spot based Eu123 rods are reported. Eu1−xCaxBa2Cu3O7−δ (x=0.2–0.5) and Eu1−yMgyBa2Cu3O7−δ (y=0.2–0.5) ceramics were synthesized from oxide powders using the standard solid state method and fabricated into short rods. For Ca-substituted rods, after appearance of a visible hot spot, a constant current plateau in I–V curve was formed. The output current response of the rod in periodically changing pO2 between 20% and 100% showed improved stability and reproducibility for x=0.4 compared to x=0.2. Improved oxygen absorption and desorption time was observed for x=0.4 compared to previously reported unsubstituted rod. On the other hand, for Mg-substituted rods the I–V behavior after formation of hot spot showed a negative slope. Faster absorption time of 3.0 s and desorption time of 6.9 s were observed for y=0.4 compared to y=0.2. The improved output current stability, reproducibility and response time is suggested to be due to changes in oxygen activation energy and increased hole concentration as a result of Ca2+/Mg2+substitutions. The Mg-substituted rods showed better performance compared to Ca-substituted rods possibly due to higher porosity and vacancy concentration. 相似文献
8.
9.
Ki-Woog SongKi-Tae Lee 《Ceramics International》2011,37(2):573-577
NdSrCo1−xFexO4+δ (0 ≤ x ≤ 1.0) intergrowth oxides have been investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All the cathodes prepared by a glycine nitrate process (GNP) indicated single phase intergrowth oxides. The introduction of Fe for Co leads to decrease TEC values and electrical conductivity, and increase polarization resistance and oxygen content. The polarization resistance of NdSrCoO4+δ composition is 0.16 Ω cm2 at 800 °C in air atmosphere, which is the best electrochemical performance compared with other compositions. 相似文献
10.
In an effort to develop alternative anode materials based on mixed conducting ceramics capable of offering high mixed ionic-electronic conductivity, stability to redox cycles, and limited activity for carbon formation to Ni/YSZ cermets, CaMoO3 ceramics for application as a solid oxide fuel cell (SOFC) anode material were synthesized as a function of temperature and oxygen partial pressure (pO2). CaMoO3 perovskite-dominant powders were obtained by reducing the CaMoO4 showing a structure of orthorhombic unit cells with the following lattice parameters: a = 5.45 Å, b = 5.58 Å, and c = 7.78 Å. The equilibrium total conductivity of CaMoO3, measured by DC 4-probe method in 5% H2/balance N2 condition (pO2 ≈ 10−22 atm) at various temperatures, decreased with increasing temperature below 400 °C, indicating metallic properties with an activation energy of 0.028 eV. Between 400 °C and 600 °C, the equilibrium total conductivity slightly increased, and finally sharply decreased at 800 °C. The Mo metal precipitation during measurement was thermodynamically proved by the predominance diagram for CaMoO3. Finally, a fuel cell with CaMoO3 anode exhibited poor performance with a maximum power density of only 14 mW/cm2 at 900 °C, suggesting that further research is needed to enhance the ionic conductivity and thus improve the catalytic properties. 相似文献
11.
Shuang Liang Jiliang ZhuMaomei Zheng Pengyu ZhangPing Sun Zhongxing WangXiaohong Zhu 《Ceramics International》2014
0.975[(Na0.5K0.5)1−2xMgxNbO3]–0.025(Bi0.5Na0.5TiO3) (KNMN–BNT, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) lead-free piezoelectric ceramics were fabricated by the conventional solid-state sintering method. The dependence of Mg content on the microstructure and electrical properties of the ceramics is investigated. The X-ray diffraction (XRD) analysis revealed that an appropriate amount of Mg diffused into the KNN–BNT lattice to form a stable solid solution, the ceramics possessed a pure perovskite structure, and a morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was observed with the composition of 0.02≤x≤0.05. The orthorhombic–tetragonal transition temperature (TO–T) is less than 95 °C and the Curie temperature (Tc) is almost unchanged (~360 °C) with the increase of MgO content. The ceramics with x=0.02 showed enhanced piezoelectric and ferroelectric properties because of close proximity to the MPB, i.e., d33~210 pC/N, kp~0.41, 2Ec~22.4 kV/cm and 2Pr~39.2 μC/cm2. Moreover, the dielectric properties exhibited optimal effects with x=0.02, that is εr~637 and tan δ~0.09. These results indicate that the introduction of MgO is an effective method to improve the density as well as the electrical properties and the temperature stability of the KNN–BNT ceramics. As a result, the KNMN–BNT ceramic is a promising candidate for lead-free piezoelectric materials. 相似文献
12.
Hamimah Abd. Rahman Andanastuti Muchtar Norhamidi Muhamad Huda Abdullah 《Ceramics International》2012,38(2):1571-1576
The structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3−δ-SDC carbonate (LSCF-SDC carbonate) composite cathodes were investigated with respect to the calcination temperatures and the weight content of the samarium-doped ceria (SDC) carbonate electrolyte. The composite cathode powder has been prepared from La0.6Sr0.4Co0.2Fe0.8O3−δ and SDC carbonate powders using the high-energy ball milling technique in air at room temperature. Different powder mixtures at 30 wt%, 40 wt% and 50 wt% of SDC carbonate were calcined at 750-900 °C. The findings indicated that the structure and thermal properties of the composite cathodes were responsive to the calcination temperature and the content of SDC carbonate. The absence of any new phases as confirmed via XRD analysis demonstrated the excellent compatibility between the cathode and electrolyte materials. The particle size of the composite cathode powder was ∼0.3-0.9 μm having a surface area of 4-15 m2 g−1. SEM investigation revealed the presence of large particles in the resultant powders resulting from the increased calcination temperature. The composite cathode containing 50 wt% SDC carbonate was found to exhibit the best thermal expansion compatibility with the electrolyte. 相似文献
13.
Bulk Cu0.5Tl0.5Ba2(Ca2−xYx)Cu3O10−δ superconductor ceramic samples were synthesized by the conventional solid-state method and characterized by X-ray diffraction, dc-resistivity, ac-susceptibility and Fourier Transform Infrared spectroscopy. The main purpose of this study was to investigate the role of charge carriers and the effect of Y substitution at Ca sites in between the CuO2 planes on superconductivity. The superconducting properties are suppressed by Y substitution at Ca sites in between the CuO2 planes of Cu0.5Tl0.5Ba2(Ca2−xYx)Cu3O10−δ samples. It is most likely that Y3+ may create correlated domains in between the CuO2 planes and localizes the carriers, which lowers the diamagnetic screening and suppresses the superconductivity. Therefore, cationic substitution reduces the three dimensional (3D) mobility of carriers, resulting in the reduction of the Fermi vector and velocity of the carriers, which in turn suppresses the superconducting properties of the material. 相似文献
14.
Daisuke Yoshikawa Jung-Min Kim Naoaki Kumagai Naoto Kitamura 《Electrochimica acta》2010,55(6):1872-67
Li4Ti5O12 (Fd-3m space group) materials were synthesized by controlling the lithium and titanium ratios (Li/Ti) in the range of 0.800-0.900 by using a spray-drying method, followed by calcination at several temperatures between 700 and 900 °C for large-scale production. Chemical and structure studies of the final products were done by X-ray diffraction (XRD), neutron diffraction (ND), X-ray photon electron spectroscopy (XPS), scanning electron microscopy (SEM) and inductively coupled plasma mass spectrometry (ICP-MS). The optimum synthesis condition was examined in relation to the electrochemical characteristics including charge-discharge cycling and ac impedance spectroscopy. It was found that when the spray-drying precursors at the Li/Ti ratio of 0.860 were calcined at 700-900 °C for 12 h in air, a pure Li4+xTi5−xO12−δ (x = 0.06-0.08) phase with a lithium-excess composition was obtained. Based on the structural studies, it was found that the excess lithium is located at the lithium and titanium layer of the 16d site in the spinel structure (Fd-3m). These pure Li4+xTi5−xO12−δ (x = 0.06-0.08) phase materials showed a higher discharge capacity of ∼164 mAh g−1 at 1.55 V (vs. Li/Li+), between the cut-off voltage of 1.2-3.0, with an excellent cyclability and superior rate performance in comparison with the Li4Ti5O12 phase containing impurity phases. 相似文献
15.
Jingchao ZhangZhaoyin Wen Jinduo HanYu Liu Shufeng SongTing-lian Wen 《Ceramics International》2011,37(3):943-949
One of the major challenges in developing proton conducting CaZr0.9In0.1O3−δ is to achieve a high densification at low sintering temperature. In this work, an auto-ignition combustion process was first used to synthesize CaZr0.9In0.1O3−δ powders aiming to improve its sinterability. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and dilatometry measurement. The results indicate that a calcination temperature of 1000 °C is sufficient to form the CaZr0.9In0.1O3−δ phase. The as-obtained powders are fine, homogeneous and well crystallized, which strongly improves the sintering properties. Dense CaZr0.9In0.1O3−δ ceramics with uniform grain size were obtained by sintering at 1350 °C, which is much lower than that required for the conventional solid state reaction method. In addition, the electrical properties of CaZr0.9In0.1O3−δ ceramics were studied by electrochemical impedance spectroscopy. 相似文献
16.
The superconducting properties of Zn-doped Cu0.5Tl0.5Ba2Ca2(Cu3−yZny)O10−δ {CuTlZn-1223} (y=0, 0.83, 1.66, 2.5) samples prepared at 820, 830, 850 and 860 °C have been compared. The samples were investigated by x-ray diffraction (XRD), dc-resistivity, ac-susceptibility and Fourier Transform Infrared (FTIR) absorption measurements. Almost all the superconducting properties have been increased to their maximum in all CuTlZn-1223 samples synthesized at 860 °C, which shows that 860 °C is the optimum temperature to achieve CuTlZn-1223 with enhanced superconducting properties. 相似文献
17.
I-Ming Hung Chun-Jing CiouYi-Jia Zeng Jun-Sheng WuYu-Chen Lee Ay SuShih-Hung Chan 《Journal of the European Ceramic Society》2011,31(16):3095-3101
This study reports the successful preparation of single-phase perovskite (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ (x = 0-0.2) by the citrate-EDTA complexing method. The crystal structure, thermal gravity analysis, coefficient of thermal expansion, electrical conductivity, and electrochemical performance of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The lattice parameter a of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ decreases as the amount of Mn doping increases. The coefficients of thermal expansion of the samples are in the range of 21.6-25.9 × 10−6 K−1 and show an abnormal expansion at around 400 °C associated with the loss of lattice oxygen. The electrical conductivity of the (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ samples decreases as the amount of Mn-doping increases. The electrical conductivity of the samples reaches a maximum value at around 400 °C and then decreases as the temperature increases. The charge transfer resistance, diffusion resistance and total resistance of a (Ba0.5Sr0.5)0.8La0.2Fe0.8Mn0.15O3-δ-Ce0.8Sm0.2O1.9 composite cathode electrode at 800 °C are 0.11 Ω cm2, 0.24 Ω cm2 and 0.35 Ω cm2, respectively. 相似文献
18.
The poor activity of cathode materials for electrochemical reduction of oxygen in intermediate and low temperature regime (<700 °C) is a key obstacle to reduced-temperature operation of solid oxide fuel cells (SOFCs). In our previous work, the direct methane fuel cell exhibits approximately 1 W cm−2 at 650 °C in hydrogen atmosphere without any functional layers when the electrospun LSCF–GDC cathode was applied into the La2Sn2O7–Ni–GDC anode-supported cell, which is approximately two times higher performance than 0.45 W cm−2 of the cell with the conventional LSCF–GDC cathode. For detailed analysis of the fibrous cathode, the symmetrical cells with the electrospun and conventional LSCF–GDC cathode are fabricated, and then their electrochemical characteristics are measured by using electrochemical impedance spectroscopy (EIS). Each resistance contribution is determined by equivalent circuit consisting of a series resistance (Rs) and three arcs to describe the polarization resistance of the cathode. Total polarization resistance of the electrospun LSCF–GDC cathode is approximately two times lower than that of the conventional LSCF–GDC cathode at 650 °C, which is attributed to fibrous microstructures and large amount of pores in 100–200 nm. The results correspond to the difference in the cell performances obtained from our previous work. 相似文献
19.
Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs) were prepared by an electroless deposition process using N2H4 as the reducing agent at room temperature. This fabrication technique together with tailored electrode porosity, modified the BSCF electrodes with silver content that varied from 0.3 to 30 wt.% without damaging the electrode microstructure. Both the Ag loading and firing temperatures were found to have a significant impact on the electrode performance, which could facilitate or block the electrochemical processes of the BSCF-based cathodes, processes that include charge-transfer, oxygen adsorption and oxygen electrochemical reduction. At an optimal Ag loading of 3.0 wt.% and firing temperature of 850 °C, an area specific resistance of only 0.042 Ω cm2 at 600 °C was achieved for a modified BSCF cathode. 相似文献
20.
Haitao Gu 《Electrochimica acta》2009,54(27):7094-9945
The electrochemical properties of LaBaCo2O5+δ-xSm0.2Ce0.8O1.9 (LBCO-xSDC, x = 20, 30, 40, 50, 60, wt%) were investigated for the potential application in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The LBCO-50SDC composite cathode exhibited the best electrochemical performance in the LBCO-xSDC cathodes. With x = 50 wt%, the ASR was 1.308 Ω cm2 at 500 °C (0.267 Ω cm2 at 600 °C and 0.052 Ω cm2 at 700 °C). The maximum of exchange current density i0 was 0.5630 A cm−2 at 700 °C. The improved electrochemical properties of LBCO-50SDC were ascribed to the porous structures of the cathode and more cathode/electrolyte/gas triple phase boundary (TPB) areas. 相似文献