首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(10):11692-11699
Sm/Mn codoped BaTiO3 ceramics were investigated for their microstructure and dielectric characteristics. The powders were prepared by the conventional solid state procedure. The concentration of Sm2O3 as a donor dopant has been kept from 0.1 up to 5.0 at%. The content of MnO2 as acceptor was kept constant at 0.05 at% Mn in all samples. The specimens were sintered at 1290 °C, 1320 °C and 1350 °C in an air atmosphere for two hours.A mainly uniform and homogeneous microstructure with average grain size ranging from 0.3 µm to 2.0 µm was observed in low doped samples. In highly doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed.The dielectric properties were investigated as a function of frequency and temperature. The low doped samples exhibit the high value of dielectric permittivity at room temperature and the greatest change at the Curie temperature. The highest value of dielectric constant (εr=6800) was measured for 0.1Sm/BaTiO3 samples sintered at 1350 °C. A nearly flat permittivity-temperature response and lower values of εr were obtained in specimens with 2.0 and 5.0 at% additive content. The dielectric constant increases with the increase of sintering temperature. The dissipation factor ranged from 0.01 to 0.22 and decreases with the increase of sintering temperature. The Curie constant (C), Curie-Weiss temperature (T0) and critical exponent of nonlinearity (γ ) were calculated using a Curie-Weiss and modified Curie-Weiss law. The highest value of Curie constant (C=9.06·105 K) was measured in 0.1 at% doped samples. The Curie constant decreased with increasing dopant content. The γ values, ranging from 1.001 to 1.58, point out the sharp phase transition in low doped samples, and the diffuse phase transition in heavily doped BaTiO3 samples.  相似文献   

2.
A new compound of barium bismuth neodymium titanate BaBi3.5Nd0.5Ti4O15 was synthesized using the traditional solid-state reaction method. X-ray diffraction analysis confirmed the compound to be a layered tetragonal structure and Raman spectrum indicated that Nd ions occupy the A site. The plate-like morphology with average grain size about 2–4 μm was observed by a scanning electron microscope (SEM). A precision impedance analyzer was used to measure the dielectric properties and impedance spectroscopy of the ceramics. The results show that the temperature of dielectric constant maximum (Tm), the room temperature dielectric constant (εr) and loss (tan δ) at 100 kHz are 287° C, 326 and 0.017, respectively. The modified Curie–Weiss law was used to describe the relaxor behavior of the ceramics which was attributed to the A site cationic disorder. The remnant polarization (2Pr) of the sample was observed to be 1.27 μC/cm2 at room temperature.  相似文献   

3.
BaTiO3-xLiF ceramics were prepared by a conventional sintering method using BaTiO3 powder about 100 nm in diameter. The effects of LiF content (x) and sintering temperature on density, crystalline structure and electrical properties were investigated. A phase transition from tetragonal to orthorhombic symmetry appeared as sintering temperatures were raised from 1100 °C to 1200 °C or as LiF was added from 0 mol% to 3 mol%. BaTiO3-6 mol% LiF ceramic sintered at 1000 °C exhibited a high relative density of 95.5%, which was comparable to that for pure BaTiO3 sintered at 1250 °C. BaTiO3-4 mol% LiF ceramic sintered at 1100 °C exhibited excellent properties with a piezoelectric constant d33 = 270 pC/N and a planar electromechanical coupling coefficient kp = 45%, because it is close to the phase transition point in addition to high density.  相似文献   

4.
Nd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (abbreviated to BNKT) binary lead-free piezoelectric ceramics were synthesized by the conventional mixed-oxide method. The results show that the BNKT ceramics with 0–0.15 wt.% Nd2O3 doping possesses a single perovskite phase with rhombohedral structure. The grain size of BNKT decreased with the addition of Nd2O3 dopant. The temperature dependence of the dielectric constant ?r revealed that there were two-phase transitions from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric. A diffuse character was proved by linear fitting of the modified Curie–Weiss law. At room temperature, the specimens containing 0.0125 wt.% Nd2O3 with homogeneous microstructure presented excellent electrical properties: the piezoelectric constant d33 = 134 pC/N, the electromechanical coupling factor Kp = 0.27, and the dielectric constant ?r = 925 (1 kHz).  相似文献   

5.
BaTiO3 ceramics were prepared by conventional sintering technique with a special emphasis on the effects of sintering temperature (1100-1230 °C) on the crystalline structure and piezoelectric properties. XRD patterns indicated that the crystallographic structure changed from tetragonal phase to orthorhombic one with raising sintering temperature from 1160 °C to 1180 °C. Domains were shaped in a stripe and a herringbone in orthorhombic samples for BaTiO3 ceramics. The domain width and domain density increased with raising sintering temperature. The BaTiO3 ceramic sintered at 1190 °C showed the excellent electrical properties, d33 = 355 pC/N, kp = 40%, Pr = 10.2 μC/cm2, respectively, which are originated to the contributions of both the crystallographic structure transition and nano-domain.  相似文献   

6.
The effects of sintering temperature and poling conditions on the electrical properties of tetragonal and orthorhombic diphasic Ba0.70Ca0.30TiO3 (BCT) lead-free ceramics have been systematically investigated. On the one hand, with increasing sintering temperature from 1270 °C to 1400 °C, the bulk density increases monotonically and the Curie temperature keeps almost constant with the value of ∼120 °C, whereas the grain size, the maximum relative dielectric constant, room temperature polarization reach the maximum values for samples sintered at 1340 °C. On the other hand, it is found that the piezoelectric property depends on poling electric field and poling temperature significantly. An enhanced piezoelectric behavior of d33=126 pC/N, kp=0.29, and Qm=588 is obtained for the BCT ceramics poled at 100 °C with 30 kV/cm field for 20 min. The aging behavior of the piezoelectric property is also investigated.  相似文献   

7.
CuO-doped Ba(Zr0.05Ti0.95)O3 (BZT) ceramics were prepared using conventional solid state reaction method, and their structure and electrical properties were investigated. It was found that a small amount of CuO could lower the sintering temperature significantly and make their microstructure more densified than pure BZT. The ceramics with 1.2 mol% CuO, sintered at 1250 °C, showed excellent piezoelectric properties with d33~320 pC/N and kp=44%. The sintering temperature was decreased by 150 °C than that for pure BZT ceramics while showing comparable piezoelectric properties. Moreover, the influence of sintering temperature on the optimally 1.2 mol% CuO-doped BZT ceramics was studied. With the temperature change, different patterns of crystal growth were observed in the doped BZT ceramics. When the sintering temperature increased from 1200 °C to 1350 °C, the patterns of normal–abnormal–normal grain growth were changed accordingly.  相似文献   

8.
The complex perovskite oxide Ba(Zn1/3Nb2/3)O3 (BZN) has been studied for its attractive dielectric properties which place this material interesting for applications as multilayer ceramics capacitors or hyperfrequency resonators. This material is sinterable at low temperature with combined glass phase–lithium salt additions, and exhibits, at 1 MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 2 wt.% of ZnO–SiO2–B2O3 glass phase and 1 wt.% of LiF-added BZN sample sintered at 900 °C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant ?r of 39, low dielectrics losses (tan(δ) < 10−3) and a temperature coefficient of permittivity τ? of 45 ppm/°C−1. The 2 wt.% ZnO–SiO2–B2O3 glass phase and 1 wt.% of B2O3-added BZN sintered at 930 °C exhibits also attractive dielectric properties (?r = 38, tan(δ) < 10−3) and it is more interesting in terms of temperature coefficient of the permittivity (τ? = −5 ppm/°C). Their good dielectric properties and their compatibility with Ag electrodes, make these ceramics suitable for L.T.C.C applications.  相似文献   

9.
Magnesium silicon nitride MgSiN2 was prepared by direct nitridation of Si/Mg2Si/Mg/Si3N4 powder compact in a temperature range 1350-1420 °C. The thermal stability examination showed that MgSiN2 is stable up to 1400 °C at 0.1 MPa N2 pressure. The activation energy of decomposition of MgSiN2 calculated from the temperature dependence of mass loss in the range of 1400-1650 °C is ΔH = 501 kJ mol−1. The time dependence and nitrogen pressure dependence of MgSiN2 decomposition was also investigated at constant temperature. MgSiN2 is stable at 1560 °C in 0.6 MPa nitrogen atmosphere. Using these experimental data together with the heat capacity published in a literature the Gibbs energy of formation of MgSiN2 was calculated in a temperature range 25-2200 °C.  相似文献   

10.
Dy substituted CCTO ceramics were synthesized using solid state reaction method. Effect of Dy on structural, microstructural, dielectric and electrical properties has been studied over a wide temperature (300–500 K) and frequency range (100 Hz–1 MHz). Rietveld refinement, carried out on the samples, confirmed single phase formation and indicated overall decrease in lattice constant. Microstructure showed bimodal distribution of grains in CCTO with bigger grains surrounded by smaller grains. Dy substitution reduced grain size. Dy substitution in CCTO reduces the dielectric constant which may be attributed to increase of the Schottky potential barrier. The dielectric constant remains nearly constant in temperature range 300–400 K. The AC conductivity obeys a power law, σac=A fn, where n is the temperature dependent frequency exponent. The AC conductivity behaviour can be divided into three regions, over entire temperature range, depending on conduction processes. The relevant charge transport mechanisms have been discussed.  相似文献   

11.
Ferroelectric and piezoelectric properties of BaTiO3 and Al-doped BaTiO3 ceramics were investigated. The ferroelectric study demonstrated that, by doping Al3+ ions in the A-site of BaTiO3, the polarization–electric field loop exhibited enhanced remnant polarization (from 12 to 17.5  μC/cm2), saturation and switching. In addition, the piezoelectric constant (d33) increased with Al-doping for both static and dynamic strain values (from 75 to 135 and from 29.2 to 57.9 pC/N, respectively, at a maximum applied electric field of 16 kV/cm). Furthermore, the dielectric constant values increased and both the dielectric loss factor and leakage current decreased, even though the transition temperature shifted to lower temperature (from 121 to 113 °C) for the Al-doped sample. Therefore, the Al-doped BaTiO3 has adjustable piezoelectric and ferroelectric properties.  相似文献   

12.
To improve the cathodic performance of olivine-type LiMnPO4, we investigated the optimal annealing conditions for a composite of carbon with cation doping. Nanocrystalline and the cation-doped LiMn1−xMxPO4 (M = Ti, Mg, Zr and x = 0, 0.01, 0.05 and 0.10) was synthesized in aqueous solution using a planetary ball mill. The synthesis was performed at the fairly low temperature of 350 °C to limit particle size. The obtained samples except for the Zr doped one consisted of uniform and nano-sized particles. The performance of LiMnPO4 was much improved by an annealing treatment between 500 and 550 °C with carbon in an inert atmosphere. A small amount of metal-rich phosphide (Mn2P) was detected in the sample annealed at 900 °C. In addition, 1 at.% Mg doping for Fe enhanced the rate capability in our doped samples. The discharge capacity of LiMn0.99Mg0.01PO4/C was 146 mAh/g at 0.1 mA/cm2 and 125 mAh/g even at 2.0 mA/cm2.  相似文献   

13.
The effect of WO3 addition on the phase formation, the microstructures and the microwave dielectric properties of 1 wt% ZnO doped 0.95MgTiO3–0.05CaTiO3 ceramics system were investigated. Formation of second phase MgTi2O5 could be effectively restrained through the addition of WO3, but should be in right amount. WO3 as additives could not only effectively lower the sintering temperature of the ceramics to 1310 °C, but also promote the densification. A dielectric constant εr of 20.02, a Q×f value of 62,000 (at 7 GHz), and a τf value of −5.1 ppm/°C were obtained for 1 wt% ZnO doped 0.95MgTiO3–0.05CaTiO3 ceramics with 0.5 wt% WO3 addition sintered at 1310 °C.  相似文献   

14.
(BaxPb1−x)(Zn1/3Nb2/3)O3 (BPZN; x = 0.06–0.1) relaxor ferroelectric ceramics produced using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. BPZN ceramics of 100% perovskite phase were obtained. Highly dense BPZN ceramics with a density higher than 98.5% of theoretical density could be obtained. Maximum dielectric constant Kmax 13,500 (at 75 °C), 19,600 (at 50 °C) and 14,800 (at 28 °C) at 1 kHz could be obtained in 6BPZN, 8BPZN and 10BPZN, respectively. Dielectric maximum temperature (Tmax) in BPZN ceramics via reaction-sintering process is lower than BPZN ceramics prepared via B-site precursor route.  相似文献   

15.
The porous reaction-bonded silicon nitride (RBSN) bodies using (6 wt.% Y2O3–2 wt.% MgO) 6Y2M were fabricated by nitridation process at 1350 °C for 8 h. The porous gas pressure sintered (GPSed)-RBSN bodies post-sintered at 1550–1850 °C for 6 h show a microstructure with low aspect ratios having high porosity. The compressive strength of samples sintered at 1650 °C, 1750 °C and 1850 °C were about 146 MPa, 251 MPa and 285 MPa, respectively. The duration time for sintering had a significant effect on the microstructure and grain morphology of the GPSed-RBSN bodies. Even though the GPSed-RBSN was carried out at the comparatively low temperature (1550 °C) for 9 h, high aspect ratio of rod-like Si3N4 grains with about 9 was observed. The material properties of samples such as porosity, phase ratio (β/(α + β)) and compressive strength of sample sintered at 9 h were about 43.2%, 99% and 141 MPa, respectively.  相似文献   

16.
(1−x)BaTiO3xBi0.5Na0.5TiO3 (BT–BNT) ceramics were prepared by the solid-state reaction method. With an increase of BNT content, both the Curie temperature and the room temperature resistivity increased. At 1 mol% BNT addition, the sample was not semiconducting, due to Bi2O3 volatilization resulting from the decomposition of pre-calcined BNT during sintering. Appropriate extra Nb2O5 doping in the raw materials could offset Bi2O3 volatilization and neutralize the redundant acceptor Na+ ions. When the extra Nb2O5 content was 0.6 mg, the sample room-temperature resistivity was 6.3×103 Ω cm, with the Curie point about 135 °C and a high PTC effect of ∼3 orders of magnitude.  相似文献   

17.
Barium titanate (BaTiO3/BT) ferroelectric system was synthesized in single perovskite phase at low temperature by using powders derived from modified solid state reaction (MSSR) and sintered by microwave (MW) processing routes. Conventional calcination temperature was optimized at 900 °C for 4 h. MW sintering of BT samples was carried out at 1100 °C for 30 min to get dense (98% density) ceramics. Room temperature (RT) dielectric constant (?r) and dielectric loss (tan δ) at 1 kHz frequency of MW sintered BT samples was found to be ∼2500 and 0.03, respectively. Saturated polarization vs. electric field (P-E) loops with remnant polarization (Pr) ∼6 μC/cm2 and coercive field (Ec) ∼1.45 kV/cm confirmed the ferroelectric nature of MW sintered BT samples. Piezoelectric coefficient from strain vs. electric field (S-E) loops study was found to be 335 pm/V.  相似文献   

18.
TiO2 varistors doped with 0.2 mol% Ca, 0.4 mol% Si and different concentrations of Ta were obtained by ceramic sintering processing at 1350 °C. The effect of Ta on the microstructures, nonlinear electrical behavior and dielectric properties of the (Ca, Si, Ta)-doped TiO2 ceramics were investigated. The ceramics have nonlinear coefficients of α = 3.0–5.0 and ultrahigh relative dielectric constants which is up to 104. Experimental evidence shows that small quantities of Ta2O5 improve the nonlinear properties of the samples significantly. It was found that an optimal doping composition of 0.8 mol% Ta2O5 leads to a low breakdown voltage of 14.7 V/mm, a high nonlinear constant of 4.8 and an ultrahigh electrical permittivity of 5.0 × 104 and tg δ = 0.66 (measured at 1 kHz), which is consistent with the highest and narrowest grain boundary barriers of the ceramics. In view of these electrical characteristics, the TiO2–0.8 mol% Ta2O5 ceramic is a viable candidate for capacitor–varistor functional devices. The characteristics of the ceramics can be explained by the effect and the maximum of the substitution of Ta5+ for Ti4+.  相似文献   

19.
Gd0.1Ce0.9O1.95 and Gd0.2Ce0.8O1.9 powders were prepared through the polyol process without using any protective agent. Microstructural and physical properties of the samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry (TG) and impedance analysis methods. The results of the thermogravimetry/differential thermal analysis (TG/DTA) and XRD indicated that a single-phase fluorite structure formed at the relatively low calcination temperature of 500 °C. The XRD patterns of the samples revealed that the crystallite size of the samples increased as calcination temperatures increased. The sintering behavior and ionic conductivity of pellets prepared from gadolinia doped ceria (GDC) powders, which were calcined at 500 °C, were also investigated. The relative densities of the pellets, which were sintered at temperatures above 1300 °C, were higher than 95%. The results of the impedance spectroscopy revealed that the GDC-20 sample that was sintered at 1400 °C exhibited an ionic conductivity of 3.25×10−2 S cm−1 at 800 °C in air. This result clearly indicates that GDC powder with adequate ionic conductivity can be prepared through the polyol process at low temperatures.  相似文献   

20.
SnO2-doped CaSiO3 ceramics were successfully synthesized by a solid-state method. Effects of different SnO2 additions on the sintering behavior, microstructure and dielectric properties of Ca(Sn1−xSix)O3 (x=0.5–1.0) ceramics have been investigated. SnO2 improved the densification process and expanded the sintering temperature range effectively. Moreover, Sn4+ substituting for Si4+ sites leads to the emergence of Ca3SnSi2O9 phase, which has a positive effect on the dielectric properties of CaO–SiO2–SnO2 materials, especially the Qf value. The Ca(Sn0.1Si0.9)O3 ceramics sintered at 1375 °C possessed good microwave dielectric properties: εr =7.92, Qf =58,000 GHz and τf=−42 ppm/°C. The Ca(Sn0.4Si0.6)O3 ceramics sintered at 1450 °C also exhibited good microwave dielectric properties of εr=9.27, Qf=63,000 GHz, and τf=−52 ppm/°C. Thus, they are promising candidate materials for millimeter-wave devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号