共查询到20条相似文献,搜索用时 46 毫秒
1.
以研究高压核电闸阀内流场特性及流固耦合问题为目的,分别建立了稳态、瞬态流体动力学模型和流固耦合作用下的结构动力学模型.通过分析模拟过程中流体的压力和速度分布可知,在稳态和瞬态流动状态下,流体在流经阀体中腔部位时均会产生压力波动,并在底部形成涡流.在流固耦合作用下闸阀的静力学结构变形和应力分布满足刚度和强度要求.然而,在... 相似文献
2.
针对多路阀高压大流量,流道结构复杂,节流温升大,造成阀芯易卡滞的问题,采用流固热耦合分析方法对阀芯进行了仿真研究。采用非线性有限元软件ADINA分别建立了阀芯固体模型和阀芯区域流道的流体模型,设置了流固热耦合边界条件,流体计算应用了k-ε湍流模型。在仿真中设置进油压力30 MPa,进油流速0.5 m/s,阀芯初始温度20℃,进油温度分别设置为25, 30, 35, 40℃。通过研究获得阀芯温度受影响区域在与油液接触处,远离油液的区域阀芯温度变化不大,阀芯上节流槽受油液温度影响最大,说明合理设计节流槽结构可降低温度效应对阀芯的影响,阀芯变形主要产生在回油区域,油液温度越高阀芯变形越大,阀芯卡死将产生于回油附近区域,同时随着油液温度的增加,阀芯变形加大,工作腔压力将上升,回油流速将下降。 相似文献
3.
4.
盾构机主驱动唇形密封性能直接影响整台盾构机的施工效率。盾构机主驱动唇封密封介质为润滑脂,工作时唇口温度可达50~60℃,为更好地预测唇封的密封性能,考虑润滑脂流变特性、唇口温度对流场分析、密封材料的影响,建立盾构机唇形密封流固热耦合仿真模型。利用流速分离法推导润滑脂二维雷诺方程,采用赫兹接触模型计算粗糙峰接触压力,结合有限元软件开展热力耦合分析,实现唇封温度场及摩擦力矩、泄漏率等关键性能参数的定量预测。结果表明:考虑温度场后唇封最大接触压力减小,接触宽度增大,摩擦力矩减小。温度对唇封应力应变状态及密封性能产生较大影响,这对盾构机主驱动唇形密封设计具有一定指导作用。 相似文献
5.
7.
提出流固耦合动力分析的新方法。该法通过结构动力学的有限元求解方程和Newmark法,导出了新的迭代公式。流场的动压力使弹性体的动态变为载荷非线性问题;同时,固体位移场的变形作用使流场成为可变域流场。这些问题都可用本不得以解决。文中给出算例和工程应用实例。数值解结果表明,该法收敛速度快,效率高,克服了耦合问题的求解困难。 相似文献
8.
9.
旋转式激振阀是高频高压电液激振系统的关键元件之一,其动态特性的好坏直接影响整个激振系统的工作性能。为了分析旋转式激振阀流-热-固多场耦合作用下的动态特性,首先基于Fluent仿真,通过滑移网格方法对旋转式激振阀的流场进行动态模拟,并实测旋转式激振阀流量对仿真结果进行验证,然后使用Ansys对旋转式激振阀进行流-热-固多场耦合仿真,探究进出口压差分别为ΔP=5 MPa、ΔP=10 MPa、ΔP=15 MPa和油液温度分别为20℃、40℃、60℃时旋转式激振阀的热特性与热变形规律。研究结果表明,旋转式激振阀内部流场和温度场分布不均匀,流体在接近阀芯阀体壁面处的温度较高,中心温度较低,旋转式激振阀出口处由于流体冲击产生局部高温,导致阀芯凹槽以及阀体出油口会有热变形,进出口压差ΔP=15 MPa时,热变形可达3.789 4μm;进油温度为60℃时,热变形可达7.701 7μm。因此选择合适的进出口压差和油液温度有利于旋转式激振阀的工作特性。该研究对于旋转式激振阀的结构设计和优化提供了理论数据。 相似文献
10.
基于流固耦合原理对离心泵叶轮进行结构分析,采用多物理场协同仿真平台ANSYS Workbench,基于单向流固耦合技术对离心泵叶轮结构进行了仿真计算,获得了离心泵叶轮在不同工况下的等效应力及变形情况,分析了叶轮最大等效应力和最大总变形随流量的变化情况。结果表明,各工况下叶轮应力分布不均且存在局部应力集中;叶轮变形的总位移随半径的增大不断变大,并在叶轮边缘达到最大值。叶轮最大等效应力随流量的增加不断减小,在0.4倍设计流量工况下最大为10.581MPa;叶轮最大总变形随流量的增加先减小后增大,在设计流量工况下最小为0.0028669mm。计算结果对离心泵叶轮的结构优化设计提供了数值依据。 相似文献
11.
12.
14.
16.
介绍了核电再热阀组的应用工况、运行参数及其使用要求,分析了阀门的结构特点、运行过程及驱动方式.核电再热阀组是安装在从汽水分离器(MSR)出口至中压缸或低压缸入口之间的再热管道上的阀门,其主要作用是参与汽轮机负荷调节及在系统紧急情况下快速关闭以防止汽轮机超速.目前,该类型阀门已应用到工程项目中. 相似文献
17.
主要介绍了感应测井仪在井下工作时的金属密封,并以四芯同轴电缆与井下接头之间的密封方式设计为例,得出感应测井仪金属密封设计和装配规则。 相似文献
18.
20.