共查询到19条相似文献,搜索用时 62 毫秒
1.
几乎所有多目标进化算法(multi-objective optimization evolutionary algorithm,MOEA)都是针对Pareto最优面为均匀分布问题而言.然而现实中很多问题Pareto最优面是非均匀分布的,决策者希望得到一个与Pareto最优面分布类似的解集.现存算法并不能有效解决该问题.对此,提出一种针对于非均匀分布多目标优化问题的维护方法(non-uniformly diversity maintenance method,NUDMM).该方法定义一个反映个体分布"规则"程度的指标——杂乱度,并设计一种降低种群杂乱度的方法,在未知Pareto最优面分布规律情况下有效剔除造成种群混乱的个体.通过与NSGA-II和SPEA2在不同维数下8个非均匀函数上对比实验,表明NUDMM在有效保持问题真实分布的同时,具有良好的收敛性. 相似文献
2.
小生境技术被广泛应用在多目标进化的分布性保持方面.但是,小生境半径不易控制等限制了其在分布性保持等方面的发展.本文提出了一种自适应小生境分布性保持策略(Adaptive Niche,AN).AN通过对Pareto解集生成最小生成树来自适应调整小生境半径,同时扩大搜索小生境半径并改变计算方法使之能够识别小生境边沿的个体,便于对其修剪与评价.通过与NSGA-II,SPEA2在不同形状测试函数上进行对比实验,结果表明,AN能够对Pareto最优面进行高效地分布性保持. 相似文献
3.
针对天线阵列设计需要优化的目标数量多、耗时长且难以收敛的问题,提出一种新的根据拥挤度动态调节邻域大小的基于分解的多目标进化算法MOEA/D。该算法引入一个拥挤参数集合,根据种群拥挤度的排名区间为子问题选取集合中不同的拥挤参数值,根据搜索阶段计算每个子问题的选择邻域和替换邻域,并间隔50代重新进行拥挤度排名计算达到动态调节邻域的目的,以平衡种群的收敛性和多样性。在对比实验中,选取测试函数DTLZ、WFG和直线阵列优化设计问题,将改进算法与其他4种算法进行性能对比。实验结果表明,改进算法在测试函数和直线阵列优化设计问题上表现均优于对比算法,搜索得到的Pareto解集满足天线阵列的设计需求。 相似文献
4.
在NSGA-Ⅱ算法的基础上,文中提出了一种新的限制精英的多目标进化算法(LEMOEA).通过分布函数的引入,限制了精英选取的数量,增大了解的搜索区域,从而更好地维护了种群多样性.动态变异算子的引入,减缓了算法的收敛速度,增大了解的搜索区域,避免了算法早熟收敛或陷入局部最优.实验结果表明:LEMOEA比NSGA-Ⅱ有更好的收敛效果和种群多样性. 相似文献
5.
该文在全极化、高距离分辨力雷达体制背景下,研究了光学区雷达目标回波极化度的分布特性,并利用分布特征参数进行定量描述,在此基础上对四类飞机目标进行了识别实验研究,获得了良好的目标分类识别效果。 相似文献
6.
7.
8.
9.
10.
复杂网络的网络结构与传播动力学都与网络的度分布有着一定的联系。所以,想要进行复杂网络的研究,首先就要进行复杂网络的度分布问题的研究。因此,基于这种认识,本文从复杂网络的结构和传播动力学与度分布指数的关系角度入手,对复杂网络的度分布问题进行了探讨。 相似文献
11.
基于加权重叠率的单目标视觉跟踪评价指标 总被引:1,自引:0,他引:1
针对真值标注的歧义性、偏差性问题和具有缩放场景的视觉跟踪应用情况,提出了一种新的视觉跟踪单目标基准评价指标.首先,在重叠率基础上提出了加权重叠率框架;其次,提出了多区域标注方法,通过多区域标注降低标注者歧义性,在具有缩放场景的应用中,通过反演进行多区域标注,使评价更符合应用实际;再次,针对标注的偏差性,提出了多标注融合方法,提高了标注的可信度;最后,将应用于单次跟踪评价的重叠率框架推广到多次跟踪评价,利用加权结果图使评价更具解释性.通过著名评价标准VOT、OTB的真值标注融合实验验证了本文标注规则的准确性;通过在具有缩放场景的视觉跟踪实验和重复实验,与其他跟踪指标的比较验证了本文指标的有效性. 相似文献
12.
在传统偏好多目标进化算法中,参考点是表达决策者的偏好信息最常用的方式,但是参考点所处位置信息有时严重影响算法的性能.针对以上问题,本文提出了一种基于权重迭代的偏好多目标分解算法(MOEA/D-PRE),主要利用权重迭代方法获取一组均匀的权重向量,并对偏好区域进行映射,使得算法在进化过程中,不用考虑参考点所处位置信息对算法性能的影响,另外提出了一种稳定可控的偏好区域模型,能响应决策者设置任意大小的偏好区域.通过对比实验表明该算法具有较好的收敛性和分布性,同时给出了满足决策者不同要求的算法模型,并且能够很好的解决参考点的位置信息对算法的影响. 相似文献
13.
14.
15.
16.
基于变尺度法的网络流量预测模型的优化研究 总被引:1,自引:0,他引:1
网络流量预测是网络性能管理的一个重要组成部分,一种好的预测模型能比较准确地判断网络流量的发展趋势,对网络管理起到推进作用。提出了将变尺度法应用于指数平滑模型中,以预测误差平方和(SSE)最小作为目标,构造并自动生成了最佳平滑参数,使网络流量的预测模型得以优化,增强了指数平滑模型对时间序列的适应能力,较好地解决了指数平滑预测模型中,平滑参数靠检验确定且为静态,平滑初值难以确定并导致预测偏差等问题。通过分析,证明了此模型能够较准确地预测出网络的流量,从而提高了网络的服务质量。 相似文献
17.
18.
本文针对复杂多目标优化问题Pareto前沿搜索难度大的特点,设计了一种结合多种群间捕获竞争、强化学习机制的多种群Memetic学习策略与进化计算模型.受种群进化、捕食种群与被捕食群体间的竞争等生态学原理的启发,提出了一种基于生态种群捕获竞争模型的多目标Memetic优化算法(Multi-Objective Memetic Algorithm based on Ecological Population Preying-competition Model,ECPM-MOMA).ECPM-MOMA算法设计并运用了捕获竞争、强化学习算子进行全局搜索,在种群进化过程中结合了Memetic搜索算子进行局部搜索.理论分析与实验结果表明,本文所提出的算法具有良好的收敛性能和分布特征,生态种群捕获竞争策略与进化计算模型对于解决复杂多目标优化问题是有效的. 相似文献
19.
提出了一种新的距离测度的学习算法。通过学习同时最大化"异类样本间的最小距离"和最小化"同类样本间的最大距离",用一个可微凸函数来较好地近似本文目标函数,避免了优化时的局部最小。同时本文算法也可用于线性降维。通过比较不同的距离测度学习算法,多个人脸库的实验结果证明了本文算法的有效性。 相似文献