首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective and timely link‐layer trigger mechanisms can significantly influence the handover performance. The handover process will not perform the correct decision and execution unless adequate and timely link‐layer trigger information is delivered. In this paper, a predictive link trigger mechanism for seamless horizontal and vertical handovers in heterogeneous wireless networks is proposed. Unlike previous link trigger algorithms based on pre‐defined signal level thresholds, the link layer triggers in this study are adaptively and timely fired in accordance with the network conditions. Firstly, the time required to perform a handover is estimated based on the neighboring network conditions. Secondly, the time to trigger a Link_Going_Down to initiate a handover is determined using a least mean square linear prediction in which the prediction interval (kh) is dynamically determined based on the estimated handover time. An upper bound for the packet loss rate during a handover is derived for a Gaussian shadowing channel. A manner in which this approach can be applied to IEEE 802.21 is shown in media independent handover scenarios. Simulation results of the proposed predictive link triggering mechanism show that it provides a timely proactive handover. The packet loss rate observed in a Gaussian shadowing channel remains low during a handover. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Future mobile services are expected to include various non‐voice oriented services. One important category of non‐voice oriented mobile services is non‐real‐time services. When a mobile user establishes a connection to access non‐real‐time service, the mobile user usually cares about whether the total time to complete its data transfer is within its time tolerance. In addition, different mobile users may have different bandwidth requirements and different tolerances in the total completion time. It is essential for wireless systems to provide various mobile users with different total completion times. In this paper, two quality‐of‐service (QoS) metrics, called stretch ratio and eligibility percentage, are employed at a connection level to present the degree of the length of the total completion time. We devise a measurement based call admission control scheme that provides multiple QoSs for various mobile users which have different requirements of stretch ratios, eligibility percentages, and bandwidths. Extensive simulation results show that the measurement based call admission control scheme not only provides various satisfactory QoSs for mobile users but also produces high throughput. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Wireless IP networks will provide voice and data services using IP protocols over the wireless channel. But current IP is unsuitable to provide delay or loss bounds and insufficient to support diverse quality of service, both required by real‐time applications. In order to support real‐time applications in wireless IP networks, in this paper a measurement‐based admission control (MBAC) with priority criteria and service classes is considered. First we have shown the suitability of MBAC in wireless IP networks by comparing its performance with a parameter‐based scheme. Next, we have investigated the performance of strictly policy‐based MBAC and policy plus traffic characteristic‐based MBAC schemes in terms of (1) increasing the user mobility, (2) changing traffic parameters and (3) the presence of greedy users. The efficiency and fairness of each scheme are measured in terms of lower class new and handoff traffic performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
In order to support the quality‐of‐service (QoS) requirements for real‐time traffic over broadband wireless networks, advanced techniques such as space‐time diversity (STD) and multicarrier direct‐sequence code division multiple access (MC‐DS‐CDMA) are implemented at the physical layer. However, the employment of such techniques evidently affects the QoS provisioning algorithms at the medium access control (MAC) layer. In this paper, we propose a space‐time infrastructure and develop a set of cross‐layer real‐time QoS‐provisioning algorithms for admission control, scheduling, and subchannel‐allocations. We analytically map the parameters characterizing the STD onto the admission‐control region guaranteeing the real‐time QoS. Our analytical analyses show that the proposed algorithms can effectively support real‐time QoS provisioning. Also presented are numerical solutions and simulation results showing that the STD can significantly improve the QoS provisioning for real‐time services over wireless networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Nowadays, seamless roaming service in heterogeneous wireless networks attracts more and more attention. When a mobile user roams into a foreign domain, the process of secure handover authentication and key exchange (AKE) plays an important role to verify the authenticity and establish a secure communication between the user and the access point. Meanwhile, to prevent the user's current location and moving history information from being tracked, privacy preservation should be also considered. However, existing handover AKE schemes have more or less defects in security aspects or efficiency. In this paper, a secure pairing‐free identity‐based handover AKE protocol with privacy preservation is proposed. In our scheme, users' temporary identities will be used to conceal their real identities during the handover process, and the foreign server can verify the legitimacy of the user with the home server's assistance. Besides, to resist ephemeral private key leakage attack, the session key is generated from the static private keys and the ephemeral private keys together. Security analysis shows that our protocol is provably secure in extended Canetti‐Krawczyk (eCK) model under the computational Diffie‐Hellman (CDH) assumption and can capture desirable security properties including key‐compromise impersonation resistance, ephemeral secrets reveal resistance, strong anonymity, etc. Furthermore, the efficiency of our identity‐based protocol is improved by removing pairings, which not only simplifies the complex management of public key infrastructure (PKI) but also reduces the computation overhead of ID‐based cryptosystem with pairings. It is shown that our proposed handover AKE protocol provides better security assurance and higher computational efficiency for roaming authentication in heterogeneous wireless networks.  相似文献   

6.
This paper studies and develops efficient traffic management techniques for downlink transmission at the base station (BS) of multi‐service IP‐based networks by combining quality‐of‐service (QoS) provision and opportunistic wireless resource allocation. A delay‐margin‐based scheduling (DMS) for downlink traffic flows based on the delays that each packet has experienced up to the BS is proposed. The instantaneous delay margin, represented by the difference between the required and instantaneous delays, quantifies how urgent the packet is, and thus it can determine the queuing priority that should be given to the packet. The proposed DMS is further integrated with the opportunistic scheduling (OPS) to develop various queueing architectures to increase the wireless channel bandwidth efficiency. Different proposed integration approaches are investigated and compared in terms of delay outage probability and wireless channel bandwidth efficiency by simulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In wireless networks, when a mobile roaming station decides to initiate a handover, it should scan multiple channels operated by neighboring base stations (BSs) (or access points (APs)) in order to find an appropriate target base station before the actual handover. In some wireless networks, the active base station is able to provide a list of channels operated by neighboring base stations. However, some of these candidate channels may not be accessible to the mobile station (MS); nonetheless, the MS scans the candidate channels consecutively. For this reason, it may take a relatively long time for the MS to select an adequate target base station channel. This process can degrade the quality of service (QoS) during handovers. To shorten the scanning latency efficiently, in this paper we propose a cooperative channel scanning method whereby groups of MSs scan candidate channels using a dispersive schedule. They then share the scanning results amongst themselves, which results in a fast handover channel decision. To apply the proposed method to a real network environment, we present a group scanning architecture and detailed application scenarios appropriate for IEEE 802.16e worldwide interoperability for microwave access (WiMAX) networks. Numerical analyses and simulation results show that our proposed method achieves a shorter target channel scanning latency. Our method is thus more efficient in terms of scanning time and channel selection accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Next generation wireless networks (NGWN) will be an integration of heterogeneous wireless access networks that will interwork over an IP‐based infrastructure. This all‐IP vision has led to the development of handover mechanisms to support seamless mobility for active network services among the different interworking wireless networks in order to ensure network access ubiquity in NGWN. These handover mechanisms need to ensure that mobile devices continue to receive ongoing communication without any noticeable disruption during handover events among the heterogeneous networks. This paper gives a qualitative and quantitative review of current handover approaches of IP mobility management protocols for NGWN with an objective to introduce a new way of further optimizing the handover performance. In particular, the paper focuses on handover approaches of mobile IPv6 (MIPv6) based mobility management protocols. Thus, the need, benefits, and limitations of these handover approaches are explored. Thereafter, dynamic handover coordination is introduced as a new viable solution that exploits the benefits and mitigates the limitations of these handover approaches hence improving handover performance in terms of handover delay, packet loss, and signaling overhead. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The increasing variety and complexity of traffic in today's mobile wireless networks means that there are more restrictions placed on a network in order to guarantee the individual requirements of the different traffic types and users. Call admission control (CAC) plays a vital role in achieving this. In this paper, we propose a CAC scheme for multiple service systems where the predicted call usage of each service is used to make the admission decision. Our scheme enables real‐time traffic to be transmitted using shared bandwidth without quality of service (QoS) requirements being exceeded. This ensures that the utilization of the available wireless bandwidth is maximized. Information about the channel usage of each service is used to estimate the capacity of the cell in terms of the number of users that can achieve a certain bit error rate (BER). Priorities assigned to each service are used to allocate the network capacity. An expression for the handoff dropping probability is derived, and the maximum acceptance rate for each service that results in the estimated dropping probability not exceeding its QoS requirements is calculated. Each call is then accepted with equal probability throughout the duration of a control period. Achieved QoS during the previous control period is used to update the new call acceptance rates thus ensuring the dropping probability remains below the specified threshold. Simulations conducted in a wideband CDMA environment with conversational, streaming, interactive and background sources show that the proposed CAC can successfully meet the hard restraint on the dropping probability and guarantee the required BER for multiple services. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a novel framework for quality‐of‐service (QoS) multicast routing with resource allocation that represents QoS parameters, jitter delay, and reliability, as functions of adjustable network resources, bandwidth, and buffer, rather than static metrics. The particular functional form of QoS parameters depends on rate‐based service disciplines used in the routers. This allows intelligent tuning of QoS parameters as functions of allocated resources during the multicast tree search process, rather than decoupling the tree search from resource allocation. The proposed framework minimizes the network resource utilization while keeping jitter delay, reliability, and bandwidth bounded. This definition makes the proposed QoS multicast routing with resource allocation problem more general than the classical minimum Steiner tree problem. As an application of our general framework, we formulate the QoS multicast routing with resource allocation problem for a network consisting of generalized processor sharing nodes as a mixed‐integer quadratic program and find the optimal multicast tree with allocated resources to satisfy the QoS constraints. We then present a polynomial‐time greedy heuristic for the QoS multicast routing with resource allocation problem and compare its performance with the optimal solution of the mixed‐integer quadratic program. The simulation results reveal that the proposed heuristic finds near‐optimal QoS multicast trees along with important insights into the interdependency of QoS parameters and resources.  相似文献   

11.
This paper analyses the performance of DS‐CDMA networks in the presence of call handoffs. We show that a handoff may violate the SINR requirements for other users, and thus cause an outage in the target cell. We propose to use the probability of such events as a possible metric for quality of service in networks with multiple traffic types, and derive the corresponding QoS parameters. A two‐level admission policy is defined: in tier 1 policy, the network capacity is calculated on the basis of the bound on outage probability. However, this policy does not suffice to prevent outage events upon handoffs for various traffic types, and henceforth, we propose an extension that reserves extra bandwidth for handoff calls, thus ensuring that handoff calls will not violate the outage probability bound. The overhead imposed by the extension is negligible, as the complete two‐tier admission control algorithm is executed only when a call is admitted into the network. Once admitted, calls can freely execute handoffs using the reserved bandwidth. The modified second‐tier bandwidth reservation policy is adaptive with respect to the traffic intensity and user's mobility and we show that it can provide satisfactory call (flow) quality during its lifetime. Analytical results for the QoS have been verified by the simulations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In this letter, we focus on the problem with the objective to maximize the system performance, while guaranteeing specified QoS constraints for multiple user classes in wireless data networks. First, we propose two opportunistic scheduling algorithms that exploit time-varying channel conditions for the special two-constraint case, and then propose an opportunistic scheduling algorithm for the general case. Simulation results illustrate that the proposed scheduling algorithms guarantee the different constraints, and achieve high-system performance that is close to the true optimal value using a known general-purpose optimization package, lingo.  相似文献   

13.
Quality of service (QoS) routing plays an important role in QoS provisioning for mobile ad hoc networks. This work studies the issue of route selection subject to QoS constraint(s). Our method searches for alternate routes with satisfied QoS requirement(s) to accommodate each communication request when the shortest path connecting the source–destination pair of the request is not qualified. In order to effectively reduce protocol overhead, a directed search mechanism is designed to limit the breadth of the searching scope, which aims at achieving a graceful tradeoff between the success probability in QoS route acquisition and communication overhead. Efficient hop‐by‐hop routing protocols are designed for route selection subject to delay and bandwidth constraint, respectively. Simulation results show that the designed protocols can achieve high performance in acquiring QoS paths and in efficient resource utilization with low control overhead. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
In order to satisfy quality‐of‐service requirements for real‐time multimedia applications over wireless networks, IEEE 802.11e has been proposed to enhance wireless‐access functionalities. In IEEE 802.11e, collisions occur frequently as the system load becomes heavy, and then, the latency for successfully transmitting data is lengthened seriously because of contention, handshaking, and backoff overheads for collision avoidance. In this paper, we propose a fragment‐based retransmission (FBR) scheme with quality‐of‐service considerations for IEEE 802.11e‐based wireless local area networks. Our FBR can be used in all proposed fragmentation‐based schemes and greatly decrease redundant transmission overheads. By utilizing FBR, the retransmission delay will be significantly improved to conform strict time requirements for real‐time multimedia applications. We develop an analytical model and a simulation model to investigate the performance of FBR. The capability of the proposed scheme is evaluated by a series of simulations, for which we have encouraging results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Content‐centric networking (CCN) has been recently proposed as an alternative to traditional IP‐based networking. In CCN, content is accessed by content name instead of a host identifier (locational identifier). This new type of access methodology rapidly and efficiently disseminates content in combination with the in‐network caching mechanism. For practical use of CCN, many network properties studied in IP‐based networking are being revisited, and new types of CCN architecture components are being designed. Although mobility is an essential aspect of the future networking system, it has not been sufficiently studied. We therefore address fundamental mobility issues, such as seamless handover, optimal access point selection, network mobility, and handling of persistent interests. In addition, for each issue, we propose practical solutions that efficiently align to a CCN environment. To ensure seamless handoff, we propose various handoff schemes and compare their performance in terms of handoff latency using packet‐level simulation. Because our proposed schemes are consistent with the characteristics and rules of CCN, we believe that they can easily be integrated as a part of CCN. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Wireless mesh networks (WMNs) have been the recent advancements and attracting more academicians and industrialists for their seamless connectivity to the internet. Radio resource is one among the prime resources in wireless networks, which is expected to use in an efficient way especially when the mobile nodes are on move. However, providing guaranteed quality of service to the mobile nodes in the network is a challenging issue. To accomplish this, we propose 2 clustering algorithms, namely, static clustering algorithm for WMNs and dynamic clustering algorithm for WMNs. In these algorithms, we propose a new weight‐based cluster head and cluster member selection process for the formation of clusters. The weight of the nodes in WMN is computed considering the parameters include the bandwidth of the node, the degree of node connectivity, and node cooperation factor. Further, we also propose enhanced quality of service enabled routing protocol for WMNs considering the delay, bandwidth, hopcount, and expected transmission count are the routing metrics. The performance of the proposed clustering algorithms and routing protocol are analyzed, and results show high throughput, high packet delivery ratio, and low communication cost compared with the existing baseline mobility management algorithms and routing protocols.  相似文献   

17.
Many sensor node platforms used for establishing wireless sensor networks (WSNs) can support multiple radio channels for wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to be used for assigning channels to nodes for multi‐channel communication in the network. Because data generated by sensor nodes are usually delivered to the sink node using routing trees, a tree‐based channel assignment scheme is a natural approach for assigning channels in a WSN. We present two fast tree‐based channel assignment schemes (called bottom up channel assignment and neighbor count‐based channel assignment) for multi‐channel WSNs. We also propose a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Growing demands for pervasive and ubiquitous services over wireless mobile networks and evolution of such networks towards heterogeneous solutions have emphasized the necessity of more intelligent handoff decisions. The existing handoff management methods in the literature are mostly using signal strength measurements and other link quality evaluations not addressing the knowledge about context of mobile devices, users and networks. Recently, context‐aware handoff management has been considered as a novel candidate for fourth generation (4G) wireless technology. In this paper, user perceived quality of service has been considered in addition to traditional contexts such as user preferences, application requirements, network parameters and link quality for decision making. User perceived quality (UPQ) has been employed as a trigger source, in addition to link layer triggers which are emerged using media independent handover (MIH) event service. This paper presents a policy based mechanism for handoff decision making where fuzzy petri nets (FPNs) have been utilized as its evaluation algorithm. A case study has been provided by simulations to show the usability and user level satisfaction. Simulation results show superior performance in terms of UPQ, jitter and packet delivery measures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In asynchronous duty‐cycled wireless sensor networks, it is desirable that the data forwarding scheme is adaptive to the dynamics caused by the uncertainty of sensor nodes’ working schedules. Contention‐based forwarding is designed to adapt to the dynamic environments. In this work, we are interested in the contention‐based geographic forwarding (CGF) for two asynchronous duty‐cycling (ADC) models, which we refer to as uninterruptible ADC (U‐ADC) and interruptible ADC (I‐ADC). We propose a new residual time‐aware routing metric for CGF in the I‐ADC model and present a residual time‐aware forwarding scheme using this metric. We evaluate the performance of CGF in both asynchronous duty‐cycling models. Simulation results show that CGF in the U‐ADC model provides a shorter delivery delay while suffering from a high sender effective duty cycle problem. CGF in the I‐ADC model incurs a very long data delivery delay, but it can achieve a good load balancing among nodes. It is also demonstrated that the proposed residual time‐aware forwarding scheme lowers the effects of the performance degradation caused by the pure asynchronous duty‐cycling operation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号