首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Rheological properties of rice starch‐galactomannan mixtures (5%, w/w) at different concentrations (0, 0.2, 0.4, 0.6 and 0.8%, w/w) of guar gum and locust bean gum (LBG) were investigated in steady and dynamic shear. Rice starch‐galactomannan mixtures showed high shear‐thinning flow behaviors with high Casson yield stress. Consistency index (K), apparent viscosity (ηa,100) and yield stress (σoc) increased with the increase in gum concentration. Over the temperature range of 20–65°C, the effect of temperature on apparent viscosity (ηa,100) was described by the Arrhenius equation. The activation energy values (Ea = 4.82–9.48 kJ/mol) of rice starch‐galactomannan mixtures (0.2–0.8% gum concentration) were much lower than that (Ea = 12.8 kJ/mol) of rice starch dispersion with no added gum. Ea values of rice starch‐LBG mixtures were lower in comparison to rice starch‐guar gum mixtures. Storage (G′) and loss (G′′) moduli of rice starch‐galactomannan mixtures increased with the increase in frequency (ω), while complex viscosity (η*) decreased. The magnitudes of G′ and G′′ increased with the increase in gum concentration. Dynamic rheological data of ln (G′, G′′) versus ln frequency (ω) of rice starch‐galactomannan mixtures have positive slopes with G′ greater than G′′ over most of the frequency range, indicating that their dynamic rheological behavior seems to be a weak gel‐like behavior.  相似文献   

2.
Commercial potato starch was separated through sedimentation into three fractions of the size < 25, 25–70 and >70 µm estimated with the laser particle meter method and <21.6, 21.7–30.6 and >30.7 µm according to the Sartorius balance method. Amylose and amylopectin content in particular fractions did not depend on the granule size. Number average and weight average molecular weight slightly decreased and phosphorus content increased with the size of granules in the fractions. Starch fractions and, for comparison, non‐fractionated starch were gelatinized in aqueous solutions of arabic, carob, karaya and xanthan gums and carrageenan. Except for the arabic gum, all tested hydrocolloids decreased onset temperature of gelation, T0, of all starch fractions. Carob and xanthan gums and carrageenan the most remarkably decreased that parameter for large fraction, whereas other gums most considerably decreased T0 of starch of the medium fraction. Effect of gums upon such parameters of the characteristics of gelation as ηmax, ηmin and η25°C depended irregularly on the size of starch granules. In gels from gums and small granules, the role of G′ and G″ module differed from that in gels from the other starch fractions.  相似文献   

3.
The aim of this study was to evaluate effects of Mesona Blumes gum (MBG) on some physical, chemical, sensory and antioxidant properties of rice extrudates. MBG was added to rice flour at 0%, 5%, 10%, 15% and 20% (w/w). The water solubility index (WSI) increased from 4.19% to 15.32% with MBG addition. Both water absorption index (WAI) and moisture retention (MR) reached maximum at 15% MBG. Bulk density (BD) was the highest at 5% (131.22 g cm?3) and the lowest at 15% MBG (121.44 g cm?3). Hardness was maximal at 5% (8.44 N mm?2) and minimal at 15% MBG (5.98 N mm?2). Expansion ratio (ER) and lightness (L*) decreased for all extruded products with MBG. MBG at 5% or 10% level could improve sensory characteristics of final products. The extract of extrudates at 15% MBG had the highest antioxidation ability among those extrudates. Thus, it was possible to produce a new palatable rice extrudate with MBG.  相似文献   

4.
The starch digestibility and rheological properties of gels were evaluated in the presence of three non-starch polysaccharides (agar, xanthan gum and konjac glucomannan) with rice starch. Each polysaccharide was added to 30% (w/w) rice starch suspension at defined concentrations and starch gels were prepared. The extent of starch gel digestibility was determined by an in vitro method and rheological properties by a dynamic oscillatory test and a compression test. The added polysaccharides suppressed starch hydrolysis in the gels compared with the control, and a concentration dependency of this suppressive effect was observed. Adding agar and xanthan gum increased the storage shear modulus (G′) of starch gels, while adding konjac glucomannan decreased G′ values. The results indicate that the suppressive effect of non-starch polysaccharides on starch digestibility appears to be not only due to the rigidity of the gel, but also the interaction between starch and non-starch polysaccharides.  相似文献   

5.
Rheological properties of corn starch octenylsuccinate (OSA starch) pastes (5%, w/w), at different 1‐octenylsuccinic anhydride (OSA) contents (0, 1.0, 1.5, 2.0 and 2.5%, w/w) were evaluated in steady and dynamic shear. The OSA starch pastes had high shear‐thinning behaviors and their flow behaviors were described by power law, Casson, and Herschel‐Bulkley models. Magnitudes of consistency index (K, Kh) and yield stress (σoc, σh) increased with the increase in OSA content and the decrease in temperature. Over the temperature range of 10–50°C, the effect of temperature on apparent viscosity (ηa,100) was described by the Arrhenius equation. The activation energy values (Ea = 10.7–13.9 kJ/mol) of OSA starches were lower than that (Ea = 15.9 kJ/mol) of native starch. Dynamic frequency sweep test showed that both storage modulus (G′) and loss modulus (G′′) of OSA starch pastes increased with the increase in OSA content. Dynamic (η*) and steady shear (ηa) viscosities of OSA starch pastes at various OSA contents did not follow the Cox‐Merz superposition rule.  相似文献   

6.
The effect of galactomananns (guar gum and locust bean gum) at different concentrations (0, 0.2, 0.4, 0.6 and 0.8%, w/w) on the dynamic rheological properties of aqueous rice starch dispersions (5%, w/w) was investigated by small‐deformation oscillatory measurements during aging. Magnitudes of storage (G′) and loss (G′′) moduli measured at 4°C before aging increased with the increase in gum concentration in the range of 0.2–0.8%. G′ and G′′ values of rice starch‐locust bean gum (LBG) mixtures, in general, were higher than those of rice starch‐guar gum mixtures. G′ values of rice starch‐guar gum mixtures as a function of aging time (10 h) at 4°C increased rapidly at initial stage and then reached a plateau region at long aging times. However, G′ values of rice starch‐LBG mixtures increased steadily without showing a plateau region. Increasing the guar gum concentration resulted in an increase in plateau values. The rate constant (K) for structure development during aging was described by first‐order kinetics. K values in rice starch‐guar gum mixtures increased with the increase in guar gum concentration. G′ values of rice starch‐galactomannan mixtures after aging were greater than those before aging.  相似文献   

7.
Stress relaxation behaviour of high acyl gellan gels has been investigated, and data were fitted successfully by a seven elements empirical model and a four term modified Maxwell model with three fixed relaxation times (20, 200 and 2000 s). In addition, the effect of testing parameters on stress relaxation characteristics and the relationship between those characteristics and intrinsic gel properties were studied. High acyl gellan gels were tested in stress relaxation with different cross‐head speeds (0.1–10 mm s?1) to applied strains (3–30%). The results showed that the cross‐head speed had little effect on stress relaxation behaviour of gels. With increasing the applied strain, the initial stress and the equilibrium stress increased. The equilibrium stresses from relaxation measurement were positively related to the hardness from TPA tests (R2 = 0.991). Relaxation appeared to be associated with the shifting of cross‐links in the gel matrix.  相似文献   

8.
W.W. Kim 《LWT》2011,44(3):759-764
Effect of galactomannans (guar gum and locust bean gum) at different concentrations on rheological and thermal properties of acorn starch pastes was examined. Steady and dynamic shear rheological tests indicated that the magnitudes of consistency index (K), apparent viscosity (ηa,100), Casson yield stress (σoc), dynamic moduli (G′, G″), and complex viscosity (η∗) of acorn starch-galactomannan mixtures were much higher than those of the control (0 g/100 g gum concentration), and that these values also increased with an increase in gum concentration. At temperatures ranging from 25 to 70 °C, the effect of temperature on ηa,100 was well described by the Arrhenius equation. In addition, DSC studies showed that the presence of galactomannans resulted in an increase in the transition temperatures (To, Tp, and Tc) and a decrease of the gelatinization enthalpy (ΔH). In general, these results suggest that the presence of galactomannans in acorn starch modifies the rheological and thermal properties, but that these modifications are dependent on the gum type and gum concentration.  相似文献   

9.
The effect of sucrose at different concentrations (0, 10, 20 and 30%) on rheological properties of rice starch pastes (5% w/w) was investigated in steady and dynamic shear. The steady shear properties of rice starch‐sucrose composites were determined from rheological parameters for power law and Casson flow models. At 25°C all the starch‐sucrose composites exhibited a shear‐thinning flow behavior (n=0.25–0.44). The presence of sucrose resulted in the decrease in consistency index (K), apparent viscosity (ηa,100) and yield stress (σoc). Dynamic frequency sweeps at 25°C indicated that starch‐sucrose composites exhibited weak gel‐like behavior with storage moduli (G′) higher than loss moduli (G′′). G′ and G′′ values decreased with the increase in sucrose concentration. The dynamic (η*) and steady‐shear (ηa) viscosities at various sucrose concentrations did not follow the Cox‐Merz superposition rule. G′ values as a function of aging time (10 h) at 4°C showed a pseudoplateau region at long aging times. In general, the values of G′ and G′′ in rice starch‐sucrose composites were reduced in the presence of sucrose and depended on sucrose concentration.  相似文献   

10.
Shazia Juna  Anton Huber   《Starch - St?rke》2012,64(3):171-180
The apparent average molar masses (Mw,app), apparent average radii of gyration (Rg,app), of native sago starch and fractions were determined using asymmetrical flow field‐flow fractionation coupled with multi‐angle light scattering and refractive index detectors (AF4/MALS/RI). Amylose‐type (Fraction A) and amylopectin‐type (Fraction B) were chemically separated from native sago starch. Native sago starch and Fractions (A–B) were dissolved in 1M KSCN using a high pressure microwave vessel. The effect of varying cross flow rates at a fixed channel flow rate upon the Mw,app and Rg,app distributions of native sago starch and Fractions (A–B) were investigated. The average Mw,app values of native sago starch, Fraction (A) and Fraction (B) were 60 × 106, 1.5 × 106 and 60 × 106 g/mol, respectively, with average Rg,app values of 142, 75 and 127 nm, respectively. The sphere‐equivalent hydrodynamic radii (Rh) values for native sago starch and fractions were determined from AF4 experimental parameters.  相似文献   

11.
The apparent average molar masses (Mw,app) and apparent average radii of gyration (Rg,app) of native tapioca starch and fractions were determined using asymmetrical flow field flow fractionation (AF4) coupled with multi‐angle light scattering and RI detectors (AF4/MALS/RI). AM‐type (Fraction A) and AP‐type (Fraction B) were chemically separated from native tapioca starch. Native tapioca starch and Fractions (A and B) were dissolved in 1 M KSCN using a high pressure microwave vessel. The effect of varying cross flow rates at a fixed channel flow rate upon the Mw,app and Rg,app distributions of native tapioca starch and Fractions (A and B) were investigated. The average Mw,app values for native tapioca starch, Fraction (A) and Fraction (B) were 59 × 106, 2.1 × 106 and 19 × 106 g/mol, respectively, with average Rg,app values of 165, 73 and 87 nm, respectively. Hydrodynamic radii (Rh) values for native tapioca starch and fractions were determined directly from AF4 experimental parameters.  相似文献   

12.
The apparent average molar masses (Mw,app), apparent average radii of gyration (Rg,app), diffusion co‐efficients (DT), and hydrodynamic radii (Rh) of normal corn (maize) starch and fractions were determined using asymmetrical flow field‐flow fractionation coupled with multi‐angle light scattering and refractive index detectors (AF4/MALS/RI). AM‐type (Fraction A) and AP‐type (Fraction B) were chemically separated from normal corn starch. Normal corn starch and Fractions (A–B) were dissolved in 1 M KSCN using a high pressure microwave vessel. The effect of varying cross flow rates at a fixed channel flow rate upon the Mw,app and Rg,app distributions of normal corn starch and Fractions (A–B) were investigated. The average Mw,app of normal corn starch, Fractions (A) and Fraction (B) were 41 × 106, 1.4 × 106 and 39 × 106 g/mol, respectively, with Rg,app values of 129, 60 and 129 nm, respectively.  相似文献   

13.
Interaction of wheat and rice starches with yellow mustard mucilage   总被引:1,自引:0,他引:1  
The effect of yellow mustard mucilage (YMM) on gelatinization and retrogradation of wheat and rice starches were studied. Considerable interactions were observed between YMM and wheat and rice starches which were accompanied by a marked increase in viscosity. DSC studies showed that the presence of YMM did not affect peak gelatinization temperature (Tp) of wheat and rice starches, but slightly increased melting enthalpy (ΔH) and the phase transition temperature range (TcT0). Addition of YMM markedly changed wheat and rice starch gel textures by increasing hardness, adhesiveness, chewiness and springiness. The addition of YMM–locust bean gum (LBG) mixture (9:1) similarly increased the viscosity of wheat and rice starches but decreased gel hardness. The swelling power as well as solubilized starch and amylose were decreased for both starches in the presence of YMM. Syneresis in wheat and rice starches was also decreased by the presence of YMM.  相似文献   

14.
Cheese analog samples were prepared using two different sources of fat milkfat and vegetable oil. The rheological properties of the samples, which ranged in moisture from 42.5 to 50%, were examined using compression and stress relaxation tests. The values of peak stress (s? at 50% strain) from the compression tests and the initial stress (s?o), equilibrium stress (s?e), and elastic constant (g1) from the stress relaxation tests, were compared. All four values were higher for the samples containing milkfat as compared to the samples containing vegetable oil. For both analog formulations, moisture content was negatively correlated with values of s?o (R2 > 0.91), s?o (R2 > 0.80) and g1 (R2 > 0.94) at 40 mm/min crosshead speed. The CPMG‐T2 relaxation curves of the samples were determined using a low field (5.35 MHz) proton magnetic resonance sensor. The T2 relaxation data were fit to a two‐term exponential model having time constants T2a and T2b In the model, the coefficients α and β indicated, respectively, the contribution of T2b and T2b to the T2 relaxation. The T2a value was associated with the water in the analog cheese while the T2b value was associated with the oil. The T2a value was correlated (R2 > 0.95) with the relative proportion of water in each sample. It increased as the moisture content increased. There were negative correlations between T2a and s?o, s?e, and g1 from the stress relaxation tests.  相似文献   

15.
Pasting and gelatinization behavior of rice gels from Japonica (Ariete, Euro), Indica (Gladio, Suriname) and waxy (Glutinous) varieties were analyzed. These varieties differ widely in amylose contents and differential scanning calorimetry (DSC) gelatinization temperatures. Besides, the effect of locust bean gum (LBG) addition and the impact of successive viscoanalyser multiple-heating–cooling and freezing–thawing cycles on the gels pasting viscosities (peak-ηpeak, trough-ηmin, final-ηfinal), viscoelasticity by oscillatory rheometry and syneresis were evaluated.  相似文献   

16.
Thermal properties of chestnut flour and chestnut starch at several water content (40, 50, 60 and 95%, flour basis, f.b.) as well as the influence of guar gum (0.5, 1.0, 1.5 and 2.0%, f.b.) on both raw materials at fixed water content (50%, f.b.) were determined by differential scanning calorimetry (DSC). Thermal properties of guar gum–water systems at several guar content (0.5, 1.0, 1.5 and 2.0%, w/w) were also obtained by DSC. Results indicated that the water content and the presence of guar gum had a significant impact on the thermal properties of chestnut flour and its starch. For each endothermic curve, the values of onset (To), peaks (Tp1, Tp2) and final (T1) temperatures decreased linearly with increasing water content. Experimental data were successfully (R2 > 0.997) described following the Flory equation. A reverse trend was observed in the enthalpy values. Thermal properties of chestnut flour and chestnut starch were suppressed by the presence of guar gum even at the lowest concentrations employed (0.5%, f.b.). The guar gum addition to the assayed systems promoted a starch gelatinization delay and the enthalpy values showed a threshold content above 1.0% of guar gum. Analyses of aqueous guar gum mixtures showed that the existence of a second transition in chestnut starch systems can be successfully explained by means of hydrocolloid–starch interactions, whereas in the flour other interactions should be taken into account.  相似文献   

17.
Effect of shear rate (15–600 s?1), gum concentration (1–2%), pH (3–9), sucrose (10–40%), lactose (5–15%), NaCl (100–300 mm ) and CaCl2 (5–50 mm ) was evaluated on apparent viscosity (ηa), flow behaviour index (n), consistency coefficient (K) and yield stress (τ0) indices of cress seed gum (CSG) solutions. Different rheological models were used to fit the experimental data, although the Herschel–Bulkley model was found the best model. An increase in gum concentration led to an increase in τ0, ηa, and k and a decrease in n values. The addition of salts lowered the k value; however, the n value showed slight significant change. The presence of sugar resulted in the enhancement of n, k, τ0 and ηap values. The existence of yield stress and pseudoplastic behaviour of CSG, its stability against salts, wide range of pH and synergic effect of sugar make it a good thickener and stabiliser in food formulations.  相似文献   

18.
The steady and dynamic shear rheological properties of hydroxypropylated rice starch pastes (5%, w/w) were evaluated at different molar substitution (MS, 0.030‐0.142). The swelling power (35.5‐52.8 g/g) and solubility (8.19‐10.7%) values of the hydroxyproylated rice starches were higher than those of native rice starch (26.6 g/g and 7.78%) and increased with an increase in MS. The hydroxypropylated starch pastes at 25°C showed a pronounced shear‐thinning behavior (n = 0.33‐0.40) with Casson yield stress (σoc = 15.9‐31.7 Pa). The consistency index (K) and yield stress (σoc) values of the hydroxypropylated starch pastes were lower than those of the native starch, and increased progressively with an increase in MS. The apparent viscosity (ηa,500) obeyed the Arrhenius temperature relationship over the temperature range of 10‐55°C; the activation energies (Ea) of the hydroxypropylated starch pastes were in the range of 14.8‐18.5 kJ/mol, i.e. higher than that (14.1 kJ/mol) of the native starch. Storage (G′) and loss moduli (G′′) of hydroxypropylated starch pastes increased with an increase in MS, while tan δ (G′′/G′) values decreased, indicating that G′ rose more strongly than G′′ with increased MS.  相似文献   

19.
A 2-factor-5-level central composite rotatable design (CCRD) of response surface methodology (RSM) was used to model linear, interaction and quadratic effects of some processing variables (salep and each starch type, the composition variables) on the response variables; physicochemical characteristics (pH, brix and turbidity) and steady shear rheological properties (apparent viscosity η, consistency coefficient K, shear stress σ and flow-behavior index n) of salep–starch mixtures (SSM); namely, salep–corn starch mixture (SCSM), salep–wheat starch mixture (SWSM) and salep–potato starch mixture (SPSM). The linear, interaction and quadratic effects of the processing variables were also modeled to develop predictive models for the tested properties to optimize the effect of these variables (salep and each starch type) using ridge analysis involved with RSM. It was concluded that salep and all starch types increased the apparent viscosity (η), shear stress (σ) and consistency coefficient (K) values; decreased the flow-behavior index (n) values of SSM samples. Salep was observed to vastly increase the viscosity of mixture samples when mixed with corn, wheat or potato starches. However, potato starch exhibited very different performance as compared to the other starches in terms of the physicochemical and steady shear rheological properties. The ridge analysis used to optimize these effects revealed that maximum η (0.84, 0.46 and 1.38 Pa s), and K (16.64, 6.48 and 28.86 Pa sn) values for the SCSM, SWSM and SPSM samples, respectively would occur at salep = 0.54% and starch = 2.83% w/w.  相似文献   

20.
With the aim of generating gelatin-like starch gel functionality, starches extracted from normal potato, high amylose potato, maize, waxy maize, wheat and pea and oxidized potato starch were modified with amylomaltase (AM) (4-α-glucanotransferase; E.C. 2.4.1.25) from Thermus thermophilus. Gel characteristics after storage for 1 and 10 days at 20 °C of 12.0% gels were assessed by monitoring proton relaxation for the resulting 51 enzyme-modified starches and two gelatins using low-field 1H nuclear magnetic resonance (LF NMR) relaxometry. Discrete and distributed exponential analysis of the Carr–Purcell–Meiboom–Gill (CPMG) LF NMR relaxation data revealed that the pastes and gels contained one water component and that the spin–spin relaxation time constants (T2) and distributions differed with respect to starch type and enzyme modification. Typically, AM modification resulted in starches with decreased T2 relaxation time and a more narrow T2 distribution indicating a more homogeneous water population. In contrast, treatment with a branching enzyme (BE) (EC 2.4.1.18) combined with AM increased T2 relaxation time and a broadened T2 distribution. As evaluated by the principal component analysis (PCA), long chains of amylopectin generated hard gels and decreased T2 relaxation time at both day 1 and day 10. Especially at day 10, T2 relaxation time could be predicted from the amylopectin chain length (CL) distribution. Reconstructed amylopectin CL distribution required to emulate gelatin LF NMR data suggest the importance of combined fractions of long (DP 60–80) and short (DP 10–25) amylopectin chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号