首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study presents a multi-criteria method used for analysing the quality of an air-conditioned indoor environment. Indoor air flow induced by an actual Heating Ventilation and Air Conditioning system was experimentally studied under various conditions. The attention was focused on thermal comfort, acoustical comfort and indoor air distribution by considering spatial statistic studies of comfort indices. The compounded electric power of fan, compressor and pumps was measured in order to get information about energy consumption. A first analysis of these parameters showed that indoor comfort cannot be described by a general law. Thus, to reach the objective of a global approach of comfort by a spatial statistical study of the various discomforts, a multi-criteria analysis based on ELECTRE II method adapted to the comfort of air-conditioned indoor environment was applied. In this way the operating rules for coherent air conditioning systems can be defined, with a requirement for quality of indoor environment.  相似文献   

2.
《Energy and Buildings》2006,38(10):1248-1261
Conventional ventilation control schemes for VAV systems cannot achieve acceptable indoor air quality (IAQ). Ventilation control at the zone level is one of key factors affecting IAQ and also impacts thermal control. This paper proposes a multi-input–multi-output (MIMO) controller to control temperature and ventilation of multiple zones in a building with a model predictive control (MPC) strategy. The controller follows the ventilation rate procedure of ASHRAE Standard 62.1 and meets its ventilation requirements. Simulation-based experiments under four types of typical weather conditions are conducted to evaluate the controller's performance. The experimental results demonstrate that the controller is capable of maintaining ventilation air requirements and temperature of multiple zones.  相似文献   

3.
CO2-based demand controlled ventilation had been tried and tested in the United States under the old ASHRAE Standard 62 “Ventilation for Acceptable Indoor Air Quality”, but this had since been replaced by ASHRAE Standard 62.1 and little is known on the field about the relative performances of CO2-based demand controlled ventilation between the old and new ventilation standards. In view of that, this paper presents a case study for an American elementary school gymnasium in order to compare the implementation of CO2-DCV under the old and new ventilation standards in terms of control strategies involved, the resulting energy savings, and indoor air quality associated with each strategy. The results indicate that, compared to the existing fixed ventilation rate strategy at which the ventilation rate is always 5% of the total supply air flow, a cooling coil energy savings of 0.03% and 1.86% can be achieved using an occupancy detection control strategy under the new ASHRAE 62.1 and old ASHRAE 62 respectively, while preserving thermal comfort and indoor air quality.  相似文献   

4.
This research assesses benefits of adding to California Title‐24 ventilation rate (VR) standards a performance‐based option, similar to the American Society of Heating, Refrigerating, and Air Conditioning Engineers ‘Indoor Air Quality Procedure’ (IAQP) for retail spaces. Ventilation rates and concentrations of contaminants of concern (CoC) were measured in 13 stores. Mass balance models were used to estimate ‘IAQP‐based’ VRs that would maintain concentrations of all CoCs below health‐ or odor‐based reference concentration limits. An intervention study in a ‘big box’ store assessed how the current VR, the Title 24‐prescribed VR, and the IAQP‐based VR (0.24, 0.69, and 1.51 air changes per hour) influenced measured IAQ and perceived of IAQ. Neither current VRs nor Title 24‐prescribed VRs would maintain all CoCs below reference limits in 12 of 13 stores. In the big box store, the IAQP‐based VR kept all CoCs below limits. More than 80% of subjects reported acceptable air quality at all three VRs. In 11 of 13 buildings, saving energy through lower VRs while maintaining acceptable IAQ would require source reduction or gas‐phase air cleaning for CoCs. In only one of the 13 retail stores surveyed, application of the IAQP would have allowed reduced VRs without additional contaminant‐reduction strategies.  相似文献   

5.
This article explores how to use EnergyPlus to construct models to accurately simulate complex building systems as well as the inter-relationships among sub-systems such as heating, ventilation and air conditioning (HVAC), lighting and service hot water systems. The energy consumption and cost of a large public building are simulated and calculated for Leadership in Energy and Environmental Design (LEED) certification using EnergyPlus. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) baseline model is constructed according to ASHRAE 90.1 standard and the comparison of annual energy consumption between ASHRAE baseline model and proposed model is carried out. Moreover, an energy efficiency (EE) model is built based on the design model. Meanwhile, other energy conservation measures (ECMs) such as daylighting dimming and occupant sensors are considered. The simulation results show 4.7% electricity consumption decrease but 6.9% gas consumption increase of the EE model compared to ASHRAE baseline model. In summary, the annual energy cost of the EE model is reduced by 7.75%.  相似文献   

6.
The use of displacement ventilation for cooling environments is limited by the vertical temperature gradient. Current standards recommend a temperature difference of up to 3 K/m between the head and the feet. This paper reviews the scientific literature on the effect of vertical temperature gradients on thermal comfort and compares this to the results of our own experiments. Early experiments have demonstrated a high sensitivity of dissatisfied test subjects to changes in the temperature gradient between head and foot level. Recent studies have indicated that temperature gradients of 4‐5 K/m are likely to be acceptable, and the mean room temperature may have a greater sensitivity on the percentage of dissatisfied (PD). In new experiments, test subjects have evaluated the thermal comfort of different vertical air temperature gradients in a modular test chamber, the Aachen comfort cube (ACCu), where they have assessed vertical temperature gradients of ΔTy = 1, 4.5, 6, 8, and 12 K/m at a constant mean room temperature of 23°C. The results of the different temperature gradients are in contrast to ANSI/ASHRAE Standard 55 (Thermal Environmental Conditions for Human Occupancy, Atlanta GA, American Society of Heating, Refrigerating and Air Conditioning Engineers, 2013) as the PD increases almost constantly with higher vertical air temperature gradients. The PD for the overall sensation increases by approximately 7% between gradients of 1 and 8 K/m. The evaluation of our own tests has revealed that vertical temperature gradients of up to 8 K/m or higher are likely to be acceptable for test subjects.  相似文献   

7.
上海市办公楼室内空气品质的测试和分析   总被引:7,自引:1,他引:7  
本文利用上海市六幢大楼的实测数据对上海市办公楼室内空气品质环境作了客观和主观两方面的评价,经分析可知,上海市办公楼内室内空气品质环境在客观评价中未达标的情况比较严重,而主观调研的结果也显示,上海市办公楼室内空气品质的可接受率远远低于ASHRAE62-1989所提出的可接受室内空气品质应满足80%的可接受率,实测说明,上海办公楼内仍然存在建筑病综合症(SBS)。同时本文强调基于“可感受的可接受的室内空气品质”这一指标,主观评价良好应是建筑物的设计人员、建造者及管理人员不懈追求的目标。  相似文献   

8.
Abstract Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23±2°C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 (ig/m3) was higher than non-smoking flights (7.6 μg/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.  相似文献   

9.
The present paper shows the results of a literature survey aimed at exploring how the indoor environment in buildings affects human comfort. The survey was made to gather data that can be useful when new concepts of controlling the indoor environment are developed. The following indoor environmental conditions influencing comfort in the built environment were surveyed: thermal, visual and acoustic, as well as air quality. The literature was surveyed to determine which of these conditions were ranked by building users as being the most important determinants of comfort. The survey also examined the extent to which other factors unrelated to the indoor environment, such as individual characteristics of building occupants, building-related factors and outdoor climate including seasonal changes, influence whether the indoor environment is evaluated as comfortable or not. The results suggest that when developing systems for controlling the indoor environment, the type of building and outdoor climate, including season, should be taken into account. Providing occupants with the possibility to control the indoor environment improves thermal and visual comfort as well as satisfaction with the air quality. Thermal comfort is ranked by building occupants to be of greater importance compared with visual and acoustic comfort and good air quality. It also seems to influence to a higher degree the overall satisfaction with indoor environmental quality compared with the impact of other indoor environmental conditions.  相似文献   

10.
The intent of this paper is to describe and compare the two different two-dimensional frame/spacer heat transfer calculation methodologies used in North America (FRAME [EEL. The FRAMEplus Toolkit for Heat Transfer Assessment of Building Components, Version 3.0, Enermodal Engineering, Kichener, Ontario, Canada, 1995], THERM [LBNL. THERM 2: PC Program for Analyzing Two-Dimensional Heat Transfer Through Building Products, LBL-37371, Windows and Delighting Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 1998], ASHRAE SPC 142P [ASHRAE. Standard Method for Determining and Expressing the Heat Transfer and Total Optical Properties of Fenestration Products, Public Review Draft of Standard 142P, American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, 1998]) and in Europe [ISO 10077-2. Thermal Performance of Windows, Doors and Shutters–Calculation of Thermal Transmittance—Part 2: Numerical Method for Frames, International Standards Organization, Geneva, 2003]. The two approaches, called the ASHRAE and ISO methods, are different in the way they treat the effect of the glazing spacer on the heat transfer through the frame and the glazing unit near the frame. The ASHRAE method assumes that the spacer effects both the heat transfer through the frame and the heat transfer through the glazing in an “edge-of glass” region 63.5 mm (2.5 in.) from the glazing/frame sight line. The ISO method assumes that the additional heat transfer due to the existence of the spacer is proportional to the glazing/frame sightline distance that is also proportional to the total glazing spacer length.  相似文献   

11.
Indoor climate of two new blocks of flats was investigated. The case building was built for people with respiratory diseases by following the instructions of the Finnish Classification of Indoor Climate, Construction and Finishing Materials, while the control building was built using conventional building technology. The main indoor air parameters (temperature, relative humidity and levels of CO, CO2, ammonia, total volatile organic compounds, total suspended particles, fungal spores, bacteria and cat, dog and house dust mite allergens) were measured in six apartments of both the buildings on five occasions during the 3-year occupancy. In addition, a questionnaire to evaluate symptoms of the occupants and their satisfaction with their home environment was conducted in connection with indoor air quality (IAQ) measurements. The levels of indoor air pollutants in the case building were, in general, lower than those in the control building. In addition, the asthmatic occupants informed that their symptoms had decreased during the occupancy in the case building. This case study showed that high IAQ is possible to reach by careful design, proper materials and equipment and on high-quality construction with reasonable additional costs. In addition, the study indicated that good IAQ can also be maintained during the occupancy, if sufficient information on factors affecting IAQ and guidance on proper use and care of equipment are available for occupants.  相似文献   

12.
Thermal comfort is one of the fundamental aspects of indoor environmental quality and it is strongly related to occupant satisfaction and energy use in buildings. This paper describes a new web application for thermal comfort visualization and calculation according to ASHRAE Standard 55-2013. Compared to existing software, the web application is free, cross-platform, and provides a visual and highly interactive accurate representation of the comfort zone. Its main features are: dynamic visualization of the comfort zone on psychrometric, temperature-relative humidity, and adaptive charts; new implementation of the Elevated Air Speed model; local thermal discomfort assessment; compliance document automation for LEED thermal comfort credits; metabolic activity and clothing insulation tables and dynamic models; and compliance with the standard. The tool can be used by architects, engineers, building operators, educators, and students.  相似文献   

13.
The natural ventilation potential to maintain acceptable indoor air quality(IAQ) and thermal comfort in gymnasia was investigated using a university multisport facility in northeastern United States as a case study building. A parametric modeling study was conducted considering the effects of opening configurations and control strategies during the summer months. The thermal accuracy of the model was verified using field measurements during August 2015. Performance metrics for IAQ and thermal comfort were the percentages of occupied hours during which ventilation rate met or exceeded ASHRAE Standard 62.1-2013 and temperature met adaptive thermal comfort criteria of ASHRAE Standard55-2013, respectively. Wind direction was found having a major effect on cross ventilation rate. Wind and buoyancy driven forces could complement or oppose each other depending on the wind direction and opening position. Relative to the base case, larger net openings that were more evenly distributed performed better.Rooftop vents improved ventilation performance, particularly under unfavorable wind conditions. With improved opening configurations, the acceptable ventilation hours increased from 21.5% to99.5% of occupied time for the maximum occupancy. The strictest temperature-controlled strategy had the best thermal performance.Thermal comfort conditions could be maintained during 85.3% of the occupied hours. However, the temperature rule largely shortened the opening operation time, and consequently decreased the acceptable ventilation hours to only 47.1%. Continuously natural ventilation during occupied time gave the longest combined IAQ-thermal acceptable hours, 73.9% of the occupied time, although it moderately decreased the thermal comfort hours to74.2%.  相似文献   

14.
The objective of this study was to develop an adaptive thermal comfort equation for naturally ventilated buildings in hot-humid climates. The study employed statistical meta-analysis of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) RP-884 database, which covered several climatic zones. The data were carefully sorted into three climate groups including hot-humid, hot-dry, and moderate and were analyzed separately. The results revealed that the adaptive equations for hot-humid and hot-dry climates were analogous with approximate regression coefficients of 0.6, which were nearly twice those of ASHRAE and European standards 55 and EN15251, respectively. The equation using the daily mean outdoor air temperature had the highest coefficient of determination for hot-humid climate, compared with other mean temperatures that considered acclimatization of previous days. Acceptable comfort ranges showed asymmetry and leaned toward operative temperatures below thermal neutrality for all climates. In the hot-humid climate, a lower comfort limit was not observed for naturally ventilated buildings, and the adaptive equation was influenced by indoor air speed rather than indoor relative humidity. The new equation developed in this study can be applied to tropical climates and hot-humid summer seasons of temperate climates.  相似文献   

15.
BACnet: a standard communication infrastructure for intelligent buildings   总被引:9,自引:0,他引:9  
Intelligent buildings require integration of a variety of computer-based building automation and control system products that are usually made by different manufacturers. The exchange of information among these devices is critical to the successful operation of the building systems. Proprietary approaches to providing this communication have created great challenges for system integrators and hampered the development of intelligent building technology. Even though digital automation and control technology has been widely available for more than a decade and islands of automation are common, intelligent buildings with integrated building services are still more of a promise than a reality.

BACnetTM1 is a standard communication protocol for building automation and control networks developed by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE, Standard 135–1995: BACnetTM—A Data Communication Protocol for Building Automation and Control Networks. American Society of Heating, Refrigerating, and Air-conditioning Engineers. Atlanta, Georgia, USA, 1995). BACnetTM provides the communication infrastructure needed to integrate products made by different vendors and to integrate building services that are now independent. This paper describes the main features of the BACnetTM protocol and early experience implementing it.  相似文献   


16.
Chan P 《Indoor air》1999,9(4):290-296
With the greater use of air-conditioned offices in Singapore, achieving good indoor air quality has become an important issue. The laws that impose duties upon designers and contractors with respect to the design and construction of air-conditioning and mechanical ventilation (ACMV) systems are set out in the Building Control Regulations and the Singapore Standard Code of Practice for Mechanical Ventilation and Air-conditioning in Buildings (hereinafter "SS CP 13:1980"). ACMV maintenance is governed by the Environmental Public Health Act, the Building and Common Property (Maintenance and Management) Act, and the Land Titles (Strata) Act, as well as by lease or tenancy agreements. Designers, contractors, developers, building owners and management corporations may also be liable to the workers, occupants and other premises users for indoor air quality (IAQ)-related injuries under the general principles of contract and tort. Recently, the Guidelines for Good Indoor Air Quality in Office Premises was issued by the Ministry of Environment to complement SS CP 13:1980 toward improving the indoor air quality of air-conditioned office premises. Although the Guidelines have no statutory effect, they may be adopted as contractual requirements in construction, lease and maintenance contracts. They may also be used to determine the relevant standard of duty of care required to discharge tortious liability. This paper looks at the existing laws and rules affecting the design, construction and maintenance of air-conditioned offices in light of Part III of the Ministry's Guidelines.  相似文献   

17.
The lack of an effective indoor air quality (IAQ) metric causes communication concerns among building tenants (the public), building managers (decision-makers), and IAQ investigators (engineers). The Indoor Air Pollution Index (IAPI) is developed for office buildings to bridge this communication discord. The index, simple and easily understood, employs the range of pollutant concentrations and concentrations in the subject building to estimate a unitless single number, the IAPI, between 0 (lowest pollution level and best IAQ) and ten (highest pollution level and worst IAQ). The index provides a relative measure of indoor air pollution for office buildings and ranks office indoor air pollution relative to the index distribution of the US office building population. Furthermore, the index associates well with occupant symptoms, percentage of occupants with persistent symptoms. A tree-structured method is utilized in conjunction with the arithmetic mean as the aggregation function. The hierarchical structure of the method renders not only one index value, but also several sub-index values that are critical in the study of an office air environment. The use of the IAPI for IAQ management is illustrated with an example. The decomposition of the index leads to the ranking of sampled pollutants by their relative contribution to the index and the identification of dominant pollutant(s). This information can be applied to design an effective strategy for reducing in-office air pollution.  相似文献   

18.
辐射顶板供冷以其节能、良好的热舒适度、无吹风感、改善室内空气品质、降低峰值能耗、节省建筑空间等优点,已经被越来越多地选作空调末端。辐射顶板供冷市场需求不断增大同时对辐射顶板制冷量的测试提出了更高的要求。本文对两种顶板辐射供冷性能实验测试方法(DIN EN 14240标准和ANSI/ASHRAE 138标准)和两种辐射顶板制冷量的计算方法(ASHRAE手册和BS EN 1264标准)做了介绍,并对辐射板供冷量的两种实验测试方法和两种计算方法分别做了比较;在按EN 14240标准搭建的实验台中对金属辐射顶板进行了测试,将辐射板单位面积供冷量两种计算值与实验测试值进行了比较并分析了误差原因。  相似文献   

19.
《Energy and Buildings》2002,34(5):431-444
This paper reports thermal comfort and indoor air quality (IAQ) studies of an under-floor air-conditioning (UFAC) system in hot and humid climate. Thermal comfort parameters were measured at predetermined grid points within an imaginary plane to predict the airflow pattern of the supply air jet as well as to determine the occurrence of thermal stratification in the office space. Fanger’s [Thermal Comfort Analysis and Applications in Environmental Engineering, McGraw-Hill, New York, 1970] thermal comfort index was also computed to detect the occupants’ thermal sensation. Besides, the concentration levels of dust and carbon dioxide were recorded with the intention to examine the quality of the indoor air. Statistical methods were applied to derive the relationship between air velocity and the other parameters as mentioned earlier. The main findings from the study revealed reasonable level of acceptability of IAQ associated with the UFAC system. However, occupants are likely to experience localised thermal discomfort near the supply diffusers due to the existence of large temperature gradients. In addition, a stagnant zone is discovered at sedentary level, which is caused by the parabolic airflow nature of the primary air jet.  相似文献   

20.
根据参观所见,概要介绍了展览会情况,主要涉及参展的空调通风设备,制冷设备,调节、测量与控制设备,水泵、阀门、配件、管道,供暖设备等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号