首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hybrid composites of Polypropylene (PP) reinforced with intimately mixed short banana and glass fibers were fabricated using Haake twin screw extruder followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both the fibers into PP matrix resulted in an increase in tensile, flexural and impact strength with an increasing level of fiber content upto 30 wt% at banana: glass fiber ratio of 15:15 wt% and 2 wt% of MAPP. The rate of water absorption for the hybrid composites decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has also been analyzed to investigate the interfacial properties. An increase in the storage modulus (E′) of the treated composite indicates higher stiffness. The tan δ spectra confirms a strong influence of fiber contents and coupling agent on the α and β relaxation processes of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out employing differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) which indicated a decrease in the crystallization temperature and thermal stability of PP with the incorporation of MAPP treated banana and Glass fiber.  相似文献   

2.
The present study investigates the tensile, flexural, notched Izod impact, and water absorption properties of bagasse and beech reinforced polypropylene (PP) composites as a function of fiber content. The surface of fibers was modified through the use of maleated polypropylene (MAPP) coupling agent. From this study, it was found that mechanical properties increase with an increase in fiber loading in both cases. However, the addition of wood fibers resulted in a decrease in impact strength of the composites. The water absorption property at varying fiber loading was evaluated and found maximum for the BA/PP composites. The weight gains for all specimens were less than 7%. In general, the results showed the usefulness of bagasse fiber as a good alternative and reinforcing agent for composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Betel nut leaf fiber (BNLF) is a new finding as cellulosic filler for polymer composites. Its main constituents are 75% α‐cellulose, 12% hemicelluloses, 10% lignin, and 3% others matter, viscosity average molecular weight 132,000 and degree of crystallinity 70%. In the present work, BNLF reinforced polypropylene (PP) composites were prepared using heat press molding method. 5–20 wt% short length fiber is taken for getting benefits of easy manufacturing and the fiber was chemically treated with NaOH, dicumyl peroxide (DCP), and maleic anhydride‐modified PP (MAPP) to promote the interfacial bond with PP. The extent of modification of fiber was assessed on the basis of morphology, bulk density, moisture absorption, thermal, and mechanical properties of untreated fiber, treated fiber, and their reinforcing PP composites. The tensile and flexural strength of composites increase with the increase of fiber loading up to 10 and 20 wt%, respectively. It was also observed that Young's modulus and flexural modulus increase with fiber loading. The thermal degradation behavior of resulting composites was investigated. Among the various treated fibers, MAPP‐treated fiber composite showed best interfacial interactions as well as mechanical and thermal properties. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
Composites were prepared with chemically modified banana fibers in polypropylene (PP). The effects of 40‐mm fiber loading and resin modification on the physical, mechanical, thermal, and morphological properties of the composites were evaluated with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy, and so on. Maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer was used to improve the fiber‐matrix adhesion. SEM studies carried out on fractured specimens indicated poor dispersion in the unmodified fiber composites and improved adhesion and uniform dispersion in the treated composites. A fiber loading of 15 vol % in the treated composites was optimum, with maximum mechanical properties and thermal stability evident. The composite with 5% MA‐g‐PP concentration at a 15% fiber volume showed an 80% increase in impact strength, a 48% increase in flexural strength, a 125% increase in flexural modulus, a 33% increase in tensile strength, and an 82% increase in tensile modulus, whereas the heat deflection temperature increased by 18°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

6.
The reinforcement mechanics of viscose‐fiber‐reinforced polypropylene (PP) composites were studied. The effect of the coupling agent, maleated polypropylene (MAPP), was of special interest. The fibers, coupling agent, and PP were extruded and injection‐molded. The composition, mechanical properties, fracture morphology, and dispersion of the composites were examined. Thermogravimetric analysis showed that the fiber content in the tensile specimens varied slightly with the sample location; however, the differences in the values were within 1.0%. Scanning electron microscopy images of the fracture surfaces of the composites showed that the surfaces of the composites without MAPP were covered with fibers pulled out from the matrix. A lack of adhesion further appeared as a cracked matrix–fiber interface. A new scanning thermal microscopy method, microthermal analysis, was used to study the dispersion of the fibers in the composites. Local thermal analyses gave further information about the location of the fibers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2676–2684, 2004  相似文献   

7.
Wood fibers are increasingly being used as reinforcement in commercial thermoplastic composites due to their low cost, high specific properties and renewable nature. The ultimate goal of our research was to find a fundamental understanding of the mechanical behavior of poplar/polypropylene (PP) composites. The effect of wood fiber concentrations and mixing temperature on the mechanical properties of composites, prepared by using MAPP as the coupling agent, was investigated. In the sample preparation, four levels of fiber loading (10, 20, 30, and 40 wt%) and three compounding temperatures (180, 190, and 200oC) were used. Most major changes in composite performance occurred at fiber contents above 30%. The results clearly showed that the fiber loading of 30 and 40 wt% at 190oC was provided adequate reinforcement to increase the tensile and flexural strength of the PP powder. The modulus also increased with increasing the fiber content, because poplar fibers are believed to be more rigid than polymer. However the addition of wood fibers resulted in a decrease in elongation and impact properties of the composites. The FTIR spectroscopy showed that the copolymer was bonded to the fibers by ester linkages and hydrogen bonds at 1705–1735 cm−1. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
In this study, morphology, and dynamic and mechanical properties of polypropylene–mica (PP–Mica) composites were investigated. To enhance the adhesion between PP and mica, maleic anhydride‐grafted PP (MAPP) and treated mica with silane coupling agent were used. MAPP (as a compatibilizer) and silane coupling agent (as a filler surface modifier) caused an interfacial bonding in the mica filled polypropylene composites. The effect of mica content, MAPP, and treated mica with silane coupling agent on the morphological properties were investigated by Scanning Electron Microscopy (SEM). The results showed that with increasing MAPP or silane coupling agent, dispersion of filler and adhesion between PP and filler were improved. Mechanical data showed that with increasing MAPP and mica treated with silane coupling agent, tensile modulus and flextural strength of composites were enhanced. Dynamic rheological behavior of composites was also investigated within the domain of linear viscoelasticity. The rheological observations indicated that the complex viscosity, storage and loss moduli increased, and tan δ decreased with increasing mica content. POLYM. COMPOS. 27:491–496, 2006. © 2006 Society of Plastics Engineers.  相似文献   

9.
The PP Composites containing Xanthoceras sorbifolia Bunge husks fibers with different surface treatments were prepared. The mechanical properties such as tensile properties and impact properties of the composites were investigated. It is revealed that the composites with fibers treated by alkali and the following treatments of silane coupling agents KH570, titanate coupling agent JN‐9A, acetic anhydride, MAPP, or bleach, all performed higher in tensile properties than that with untreated fibers, while lower in impact properties. Meanwhile, all treated fibers performed better thermal stability than untreated fibers. The fibers treated by alkali followed by KH570 treatment were added into PP with different contents. It is found that as the fiber content increases, the elastic modulus and impact strength of the composites increase sharply at first followed by a decrease, while the tensile strength decrease initially and increase with a peak at 10%, then decrease continuously. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41217.  相似文献   

10.
Kenaf fiber (KF) reinforced recycled polypropylene (RPP) composites were produced by melt cast method. To improve interfacial adhesion between fiber and RPP matrix, fiber surface modification was carried out by means of ultrasound treatment. Maleic anhydride grafted polypropylene (MAPP) was used as a coupling agent. Composites were examined by mechanical test, melt flow indexing test, scanning electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Water uptake analysis and accelerated weathering test were carried out to find the suitability of the composites in outdoor application. Among the raw fiber contents ranging 10?50 wt % in the composites, the maximum tensile strength (TS) was observed at 40 wt % KF loading without using MAPP. Treated KF‐based composite with MAPP promotes this maximum TS value, which is 57% higher than that of raw KF‐based composite. TGA and DSC analyses exhibit an enhancement of thermal stability in treated KF‐reinforced RPP composites with MAPP. Incorporation of MAPP in the composites shows higher activation energy, suggesting improved interfacial bonding between fibers and matrix. Response surface method was employed to demonstrate the optimal treatment parameters for TS, showing excellent agreement with the observed values. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
This article concerns the effectiveness of MAPP as a coupling agent in sisal–polypropylene composites. The fiber loading, MAPP concentration, and fiber treatment time influenced the mechanical properties of the composites. It was observed that the composites prepared at 21 volume percent of fibers with 1% MAPP concentration exhibits optimum mechanical strength. SEM investigations confirmed that the increase in properties is caused by improved fiber‐matrix adhesion. The viscoelastic properties of the treated and untreated composites were also studied. From the storage modulus versus temperature plots, an increase in the magnitude of the peaks was observed with the addition of MAPP and fiber reinforcement, thus showing an improvement in stiffness of the treated composites. The damping properties of the composites, however, decreased with the addition of the fibers and MAPP. The thermal properties of the composites were analyzed through DSC and TGA measurements. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1336–1345, 2004  相似文献   

12.
Binary composites of high‐crystalline fibrous cellulose with polypropylene (PP) or maleic anhydride‐grafted polypropylene (MAPP) were prepared by melt‐mixing with different contents of cellulose from 0 to 60 wt %. Ternary composites of cellulose with PP and MAPP were also prepared to investigate the effects of MAPP as a compatibilizer between cellulose and PP. Scanning electron microscopy revealed that the addition of MAPP generates strong interactions between a PP matrix and cellulose fibers: All cellulose fibers are encapsulated by layers of the matrix and connected tightly within the matrix. Thus, the tensile strength and Young's modulus of MAPP‐containing composites increase with an increase in MAPP and cellulose content, in contrast to the decrease in tensile strength of a PP‐based binary composite with an increase in cellulose. Cellulose fibers act as a nucleating agent for the crystallization of PP, which is promoted by the addition of MAPP through an increase of the crystallization temperature of PP in the composite. Accordingly, both cellulose and MAPP facilitate the thermooxidative stability of PP composites in the following order: MAPP/cellulose > PP/MAPP/cellulose > PP/cellulose > PP. Relative water absorption increases with an increase in cellulose content, decreasing with the addition of MAPP. MAPP‐containing cellulose composites have high potential for applications as environmentally friendly materials. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 337–345, 2003  相似文献   

13.
The purpose of this work was to study how viscose fiber behaves in polypropylene (PP) matrix when maleated polypropylene (MAPP) is used as a coupling agent. The influences of processing conditions on composite properties was of interest. Composites were characterized by FTIR and mechanical testing. The most notable result was the effect of the MAPP concentration on the tensile strength of the composites; the tensile strength increased from 40 to 69 MPa when MAPP was added in amounts up to 6 wt % of the fiber weight. The interaction between MAPP and fiber was confirmed with FTIR. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1895–1900, 2003  相似文献   

14.
Fiber‐reinforced polymers have received considerable attention from industry in recent years. Due to the sharp ecological damage, worldwide shortage of trees in many areas and the global demand for fibrous material, there has been growing interest in the use of recycled wood fiber as an alternative or substitute fiber source. The present study investigates the tensile, flexural, Izod impact, and water absorption behavior of Old Corrugated Container (OCC) and aspen (AS) reinforced polypropylene (PP) composites as a function of fiber content. The surface of AS and OCC fibers was modified through the use of MAPP coupling agent. From the studies it was found that mechanical properties increase with increase in fiber loading in both cases. However the addition of wood fibers resulted in a decrease in impact strength of the composites. The water absorption property at varying fiber loading were evaluated and found maximum for the OCC/PP composites. The weight gains for all specimens were less than 3.5%. Finally, the results showed the usefulness of OCC fiber as a good alternative and reinforcing agent for composite. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

15.
Enhancement of tensile strength, impact strength, and flexural strength of polypropylene/short glass fiber composites by treating the glass fibers with coupling agent, mixing with maleated polypropylene (MPP) for compatibilization and adhesion, and with nucleating agent for improvement of polypropylene crystallization was studied. The results showed that both the silane coupling agent and MPP enhance tensile strength, impact strength, and flexural strength. In the absence of MPP, the effect of silane coupling agent on the mechanical properties of the composites decreases in the following order: alkyl trimethoxy silane (WD‐10) > γ‐methacryloxypropyl trimethoxysilane (WD‐70) > N‐(β‐aminoethyl)‐γ‐aminopropyl trimethoxysilane (WD‐52), whereas in the presence of MPP, the order changes as follows: WD‐70 > WD‐10 > WD‐52. When the glass fibers were treated with WD‐52, 4,4‐diamino‐diphenylmethane bismaleimide (BMI) can further enhance the mechanical properties of the composite. The three kinds of strengths increase with MPP amount to maximum values at 5% MPP. As a nucleating agent, adipic acid is better than disodium phthalate in improving the mechanical properties, except for the notched impact strength. Wide‐angle X‐ray diffraction showed that the adipic acid is an α‐type nucleating agent, whereas disodium phthalate is a β‐type nucleating agent. Blending with styrene–butadiene rubber can somewhat improve the notched impact strength of the composites, but severely lowers the tensile strength and bending strength. Scanning electron micrographs of the broken surface of the composite showed greater interfacial adhesion between the glass fibers and polypropylene in the modified composite than that without modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1414–1420, 2005  相似文献   

16.
软木纤维增强PP复合材料的研究   总被引:9,自引:0,他引:9  
采用软木纤维作为增强材料提高聚丙烯性能。为了改善软木纤维和聚丙烯母体之间的相容性,用马来酸酐接枝聚丙烯(MAPP)对软木纤维进行接枝处理,用MAPP或用三元乙丙橡胶(EPDM)对软木纤维进行改性处理。结果表明,与未经处理木纤维的复合材料相比,三种处理方法都使复合材料的热性能、加工性能和力学性能有了较大的提高。用MAPP接枝和用MAPP表面处理木纤维的方法比用EPDM表面处理木纤维的方法在提高复合材料热性能、加工流动性和拉伸强度方面更为显著。用EPDM表面处理木纤维在改善复合材料的冲击强度、断裂伸长率上更明显。此外,木纤维在复合材料中的浓度对复合材料其它性能的影响,以及MAPP接枝木纤维和MAPP处理木纤维的不同实验结果也进行了评价。  相似文献   

17.
Composites consisting of a polypropylene (PP) and highly crystalline cellulosic microfibers were prepared by melting mixing with the maleic anhydride grafted polypropylene (MAPP) as a compatibilizer. The results show that even with addition of a small amount of MAPP, the mechanical properties of the composites improved dramatically. The improvement is attributed to stronger interfacial adhesion caused by esterification between anhydride groups of MAPP and hydroxyl groups of cellulose, although the number of the ester bonds is too few to be detected by FT‐IR spectroscopy. It was also found that tensile strength and Young's modulus increased with the increasing MAPP contents in the composites, and the optimum MAPP content is about 10 wt% for the composite with cellulose content of 30 wt%. SEM indicated that the interfacial adhesion between cellulose fibers and PP improved in MAPP‐containing composites. The DSC results showed that MAPP has little effect on melting and crystallization temperatures of PP in the composites. POLYM. COMPOS., 26:448–453, 2005. © 2005 Society of Plastics Engineers  相似文献   

18.
The oscillatory shear rheological properties, mechanical performance, shrinkage, and morphology of polypropylene (PP)‐talc composites chemically coupled by maleic‐anhydride‐grafted polypropylene (MAPP) were studied. The samples were prepared in a co‐rotating L/D = 40, 25 mm twin‐screw extruder. Tensile tests carried out on injection‐molded samples showed a reinforcing effect of talc up to 20 wt% on PP. Upon using MAPP, the mechanical performance of PP‐30% talc showed a maximum of about 10% increase in tensile strength at 1.5 wt% of MAPP. A Newtonian plateau (η0) at the terminal zone was observed for the complex viscosity curve of pure PP and PP‐talc composites plotted against frequency up to 30 wt%. Upon increasing the talc content to 40 and 50 wt%, the complex viscosity at very low shear rates sharply increased and showed yield behavior that might be due to the formation of a network of filler agglomerates in the melt. Analysis of viscosity behavior in the power‐law region revealed that the flow behavior index‐n‐decreased from 0.45 for 10 wt% of talc down to about 0.4 for 40 wt% of talc. Upon increasing the talc content to 50 wt%, n decreased to a value even lower than that of the neat PP resin. The frequency of the crossover point represents molecular mobility and relaxation‐time behavior. The crossover frequency of the composites was nearly constant up to 30 wt% of talc and decreased at higher filler loadings. The optimum amount of coupling agent could be correlated with the minimum point in crossover frequency and crossover modulus. The shrinkage behavior of the composites with and without MAPP resin was studied and correlated with the rheological properties. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

19.
采用硅烷偶联剂(A-174)偶联、高锰酸钾接枝和乙酰化包覆等3种方法对香蕉纤维进行表面改性,制备了改性香蕉纤维增强环氧树脂复合材料,测试其拉伸、弯曲、压缩、冲击等力学性能。结果表明,偶联、接枝、包覆等表面改性均能明显改善香蕉纤维与基体树脂的相容性,提高复合材料的力学性能,其中偶联改性的效果最好。当改性香蕉纤维含量为10wt%时,与未改性的香蕉纤维比较,复合材料的拉伸强度、弯曲强度、压缩强度分别提高了1.8、1.0、2.6倍;随着纤维含量的增加,复合材料的力学性能明显提高。  相似文献   

20.
Wheat straw fiber‐polypropylene (PP) composites were prepared to investigate the effects of wheat straw fiber content (10, 20, 30, 40, and 50 wt %), fiber size (9, 28, and 35 mesh), and maleic anhydride grafted polypropylene (MAPP) concentration (1, 2, 5, and 10 wt %) on the static and dynamic mechanical properties of the wheat straw fiber‐PP composites in this study. The tensile modulus and strength of the composites increased linearly with increasing wheat straw fiber content up to 40%, whereas the elongation at break decreased dramatically to 3.78%. Compared with the composites made of the longer wheat straw fiber, the composites made of the fines (>35 mesh) had a slightly higher tensile strength of 31.2 MPa and tensile elongation of 5.39% at break. With increasing MAPP concentration, the composites showed an increase in tensile strength, and the highest tensile strength of 34.0 MPa occurred when the MAPP concentration reached 10 wt %. As wheat straw fiber content increased from 0 to 40%, the flexural modulus of the composites increased gradually from 1335 to 3437 MPa. The MAPP concentration and wheat straw fiber size distribution had no appreciable effect on the static flexural modulus of the composites. The storage flexural modulus of the composites increased with increasing wheat straw fiber content. The scanning electron microscopy (SEM) observation on the fracture surface of the composites indicated that a high wheat straw fiber content (>30 wt %) resulted in fiber agglomeration and a reduction in interfacial bonding strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号