首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyimide‐MWCNT nanocomposites were prepared by the reaction of a heterocyclic diamine monomer of bis(4‐amino‐3,5‐dimethylphenyl)‐2‐chloro‐3‐quinolylmethane (BACQM), pyromellitic dianhydride (PMDA) with unmodified MWCNT (MWCNT), acid‐functionalized MWCNT (acid‐MWCNT) or amine‐functionalized MWCNT (amine‐MWCNT) using microwave irradiation as well as by the conventional method. The structure of the monomer was confirmed by FTIR, 1H‐NMR, and 13C‐NMR spectral techniques. The glass transition temperature (Tg) of the MWCNTs/polyimide nanocomposite was found to be higher than that of the unfilled polyimide system. The Tg's of both systems were higher when prepared with the microwave method than the conventional synthesis. The Tg's of the nanocomposites using acid and amine functionalized MWCNTs are greater than 300°C, in both methods. This is attributed to the presence of hydrogen bond and strong covalent bond in both the acid‐MWCNT/polyimide and amine‐MWCNT/polyimide systems. The morphological studies of the nanocomposites synthesized using microwave irradiation show that a distinct MWCNT nanofibrillar network is formed in the matrix when MWCNT or acid‐MWCNT is used. A homogeneous morphology, without distinct nanotube domains is seen when the amine‐MWCNT is covalently linked to the polymer. POLYM. COMPOS., 37:2417–2424, 2016. © 2015 Society of Plastics Engineers  相似文献   

2.
The main motivation of the present work was to fabricate novel multifunctional polymer‐based nanocomposites. The nanocomposites embedded with multi‐walled carbon nanotube‐boehmite (MWCNT‐boehmite) were prepared via hot pressure casting technique. The MWCNT coated with boehmite were synthesized by hydrothermal synthesis. Subsequently, as‐prepared MWCNT‐boehmite was added into the phthalonitrile‐terminated polyarylene ether nitriles (PEN‐t‐CN) matrix in order to benefit from the synergetic effect of MWCNT and boehmite. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) X‐ray diffraction (XRD), and Fourier transform infrared (FTIR) were employed to confirm the existence of MWCNT‐boehmite in our article. Furthermore, the structures, fracture morphologies, thermal, mechanical and dielectric properties of the nanocomposites were investigated, respectively. SEM images indicated that the MWCNT‐boehmite was homogeneously dispersed in the polymer, which acted as an essential factor to ensure good physical properties. The TGA analysis showed that the incorporation of MWCNT‐boehmite enhanced the thermal stability of the nanocomposites with initial degradation temperature (Tid) increasing from 458 to 492°C, while that of the pure PEN‐t‐CN was 439°C. The mechanical testing proved that significant enhancement of mechanical properties has been achieved. The tensile strength of PEN‐t‐CN/MWCNT‐boehmite composites with 3 wt% MWCNT‐boehmite reached the maximum (78.33 MPa), with a 41.7 % increase compared to the pure polymer. More importantly, the unique dielectric properties were systematically discussed and the results demonstrated that dielectric properties exhibited little dependency on frequency. For the incorporation of hybrid filler, the positive impact of MWCNT‐boehmite hybrid material resulted in polymer‐based nanocomposites with enhanced physical properties. POLYM. COMPOS., 36:2193–2202, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Obtaining strong interfacial interaction between filler and polymer matrix is very crucial for the fabrication of polymer nanocomposites with superior performance. Present study is aimed to fabricate high performance styrene butadiene rubber (SBR) nanocomposites with imidazolium type ionic liquid modified multiwalled carbon nanotube (MWCNT). Ionic liquid facilitates the dispersion of MWCNT in rubber matrix and it is obvious from transmission electron microscopy images. Diffusion of toluene through SBR nanocomposite membranes has been investigated as a function of surface modified MWCNT (f-MWCNT) content to analyze the chain dynamics and filler-polymer interactions. O2 gas barrier effect of nanocomposites with special reference to the filler loading is explored. The substantial improvement in the barrier effect in presence of filler interpreted on the grounds of a theoretical model describing permeability of heterogeneous systems. Finally solvent sensing characteristics of prepared nanocomposites are also analyzed and it is observed that prepared nanocomposites can be used as a flexible solvent sensor.  相似文献   

4.
This study focuses on the electrical properties of polycarbonate (PC)/poly(ε‐caprolactone) (PCL)‐multiwall carbon nanotube (MWCNT) nanocomposites. MWCNTs were incorporated into thermoplastic PC matrix by simple melt blending using biodegradable PCL based concentrates with MWCNT loadings (3.5 wt%). Because of the lower interfacial energy between MWCNT and PCL, the nanotubes remain in their excellent dispersion state into matrix polymer. Thus, electrical percolation in PC/PCL‐MWCNT nanocomposites was obtained at lower MWCNT loading rather than direct incorporation of MWCNT into PC matrix. AC and DC electrical conductivity of miscible PC/PCL‐MWCNT nanocomposites were studied in a broad frequency range, 101?106 Hz and resulted in low percolation threshold (pc) of 0.14 wt%, and the critical exponent (t) of 2.09 from the scaling law equation. The plot of logσDC versus p?1/3 showed linear variation and indicated the existence of tunneling conduction among MWCNTs. At low MWCNT loading, the influence of large polymeric gaps between conducting clusters is the reason for the frequency dependent electrical conductivity. Transmission electron microscopy and field emission scanning electron microscopy showed that MWCNTs were homogeneously dispersed and developed a continuous interconnected network path throughout the matrix phase and miscibility behavior of the polymer blend. POLYM. ENG. SCI., 54:646–659, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Nanocomposites based on poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate‐co‐octadecyl methacrylate) (M/O) matrices and four different types of multiwall carbon nanotubes: pristine, oxidized (MWCNT–COOH), methyl ester (MWCNT–COOCH3), and dodecyl ester (MWCNT–COOC12H25) functionalized, were prepared in situ by radical (co)polymerization. The effectiveness of preparation of nanocomposites regarding dispersion and distribution of various MWCNT in polymer matrices was sized by Scanning electron microscopy. In case of PMMA matrix, the best dispersion and distribution were accomplished for MWCNT–COOCH3 due to their chemical resemblance with polymer matrix. After the introduction of 10 mol % of octadecyl methacrylate in polymer matrix a fairly good dispersion and distribution of MWCNT–COOCH3 were retained. The addition of 1 wt % of MWCNTs caused a significant reduction in the degree of polymerization of the PMMA matrix. But at the same time, the present MWCNTs increased storage modulus of PMMA nanocomposites except for dodecyl ester functionalized MWCNT. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46113.  相似文献   

6.
An electric field-assisted in situ dispersion of multiwall carbon nanotubes (MWCNTs) in polymer nanocomposites, fabricated through stereolithography three-dimensional (3D) printing technique, was demonstrated. The introduction of MWCNTs increased the elasticity modulus of the polymer resin by 77%. Furthermore, the use of an electric field for in situ MWCNT dispersion helped improving the average elongation at break of the samples with MWCNTs by 32%. The electric field also increased the ultimate tensile strength of the MWCNT reinforced nanocomposites by 42%. An increase of over 20% in the ultimate tensile strength of in situ dispersed MWCNT nanocomposites over the pure polymer material was observed. Finally, it was demonstrated that the magnitude and direction of the electrical conductivity of MWCNT nanocomposites can be engineered through the application of in situ electric fields during 3D printing. An increase of 50% in the electrical conductivity was observed when MWCNTs were introduced, while the application of the electric field further improved the electrical conductivity by 26%. The presented results demonstrated the feasibility of tuning both electrical and mechanical properties of MWCNT reinforced polymer nanocomposites using in situ electrical field-assisted 3D printing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47600.  相似文献   

7.
Poly(vinyl alcohol) (PVA) was used to prepare nanocomposites of multi‐wall carbon nanotubes (MWCNT) and functionalized carbon nanotubes (MWCNT‐NH2) in existence of 2‐carboxyethyl acrylate oligomers (CEA). Radiation‐induced crosslinking of the prepared matrix was carried out via gamma and ion beam irradiation. A comparative study of gamma and ion beam irradiation effect on the electrical conductivity of nanocomposite was conducted. The gelation of the gamma irradiated matrix outperforms the ion beam irradiated matrix. The order of gelation is PVA > (PVA/CEA) > (PVA/CEA)‐MWCNT > (PVA/CEA)‐MWCNT‐NH2. There is a significant reduction in the swelling of the nanocomposite. The formation of nanocomposites was confirmed by scanning electron microscopy, energy‐dispersive X‐ray (EDX) and FTIR examinations. The direct current electrical properties of PVA/nanocomposites are examined at room temperature by applying electric voltage from 1 to 20 V. The results revealed that the electrical conductivity is increased by adding the carbon nanotubes and irradiation by gamma and ion beam. At an applied electric voltage 20 V, in the electrical conductivity of the unirradiated PVA was from 9.20 × 10?8 S cm?1. After adding MWCNT an increase up to 4.70 × 10?5 S cm?1 was observed. While after ion beam irradiation, a further increase up to 9.30 × 10?5 S cm?1 was noticed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46146.  相似文献   

8.
The effect of multiwalled carbon nanotube (MWCNT) dimensions and surface modification on the morphology, mechanical reinforcement, and electrical properties of PP‐based composites, prepared by melt mixing, has been studied. The MWCNTs of small (d < 10 nm) and large (d = 40–60 nm) diameters with various intrinsic aspect ratios (L/d) have been used as filler. Transmission electron microscopy and very cold neutrons (VCN) scattering showed that both as‐received and surface modified small diameter MWCNT(1)s exhibit a strong tendency to bundle or cluster together in melt compared to both long MWCNT(3)s and short MWCNT(2)s large diameter nanotubes. The fractions of isolated nanotubes are higher and the mass‐fractal dimensions are lower for thick MWCNT‐based nanocomposites. The nanotubes of all types are heterogeneous nucleation sites for PP crystallization. The tensile and DMA testing results revealed that both long thick MWCNT(3)s with L/d ≈ 300 and thin MWCNT(1)s with highest intrinsic L/d > 1000 exhibit similar reinforcing effects, because drastically decreasing the effective aspect ratio (L/d)eff of the thin flexibly nanotubes within polymer matrix. The nanocomposites based on the long large diameter MWCNT(3)s demonstrated the lowest percolation threshold equal to 1.5 vol % loading, highest dielectric and electromagnetic waves shielding properties. It was concluded that the choice of optimal diameter and length of MWCNTs is right approach to the improvement in the dispersion state and straightness of multiwelled carbon nanotubes in polymer melt as well as to enhancement of their efficiency as reinforcing and conductive nanosized filler. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Polymer‐based composites find use in many nuclear and space application for their ease of fabrication, tailor made properties and light weight. Certain polymers like PTFE, unfilled polyesters and polyamides are prone to degradation in presence of high energy radiation while polymers like epoxies, polyimides, and poly‐ether ether ketone have good stability to ionizing radiation. Incorporation of fillers like carbon nanotubes (CNTs) is likely to improve the radiation resistance of the polymers. In this work, polysulfone (PSU)‐based nanocomposites were fabricated using multiwalled carbon nanotube (MWCNT) by solution mixing process. The morphology of the PSU/ MWCNT nanocomposites films were studied using Field Emission Scanning Electron Microscopy (FESEM). The prepared films were subjected to γ radiation in an argon environment (to avoid the effect of air/oxygen). Different techniques were used to understand the radiation‐induced changes. Gel Permeation Chromatography (GPC) traces of neat PSU before and after exposure to radiation shows a decrease in molecular weight. Infrared spectroscopy shows changes in chemical structure. Differential Scanning Calorimetry (DSC) thermograms reveal dose‐related changes. For neat PSU, a decrease in Tg was observed with increase in dose. For PSU/ MWCNT nanocomposites, the increase in MWCNT content and dose (up to 1.5 MGy) increased the Tg. Thermo Gravimetric Analysis (TGA) showed a marginal decrease in thermal stability for pristine PSU as well as PSU/MWCNT nanocomposites with irradiation. Tensile strength increased with increasing MWCNT content but decreased with dose. Elongation at break decreased with MWCNT content as well as radiation dose. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42017.  相似文献   

10.
Low density polyethylene (LDPE) and multiwall carbon nanotube (MWCNT) nanocomposites of varying MWCNT contents were prepared by melt blending and compression molding. The sample sheets were exposed to microwave irradiation and the effect on chemical, mechanical, and thermal properties as well as the sheets' morphology were determined and compared with that of nonirradiated samples with similar compositions. The percentage crystallinity of the LDPE/MWCNT nanocomposites declined after irradiation due to the degradation of polymeric chains. However, the melting temperature was hardly changed. The chemical degradation due to irradiation was also verified from the increase in the carbonyl index as determined from the Fourier transformed‐infrared spectroscopy study and the decline in the storage modulus of the dynamic mechanical analysis study. The microcalorimetry study revealed that the MWCNT nanofillers were effectively acting as a heat absorption shield by reducing the heat release rate of polymer during combustion. The Raman spectra and scanning electron microscopy photographs demonstrated improved interaction of MWCNT with the LDPE matrix after microwave irradiation. POLYM. COMPOS., 35:2036–2042, 2014. © 2014 Society of Plastics Engineers  相似文献   

11.
Amino‐functionalized multi walled nanotube (MWCNT‐NH2) filled isotactic PP and isotactic‐syndiotactic (70:30) mixed PP based melt‐mixed nanocomposites have been comparatively evaluated with regard to morphological, rheological and thermo‐mechanical properties. The ratio of mean free space lengths (Lf) to infiltrated mean free space lengths (Linf) between nanotubes in isotactic‐syndiotactic (70:30) blended matrix based nanocomposites increased relatively indicating a dispersed‐morphology. The rheological percolation threshold increased up to a higher extent of MWCNT‐NH2 loading (from øc ~ 2.3 × 10?4 in isotactic to øc ~ 11 × 10?4 in iso‐syndio blend) accompanied with the formation of a mechanically responsive network structure. van‐GurpPalmen plot showed a transition in the rheological response as a consequence of network morphology getting shifted to higher concentration of MWCNT‐NH2 in the isotacticsyndiotactic mixed PP based nanocomposites than in the isotactic based one. Constitutive modeling of complex viscosity response of the nanocomposites led to functional correlation between the percolation and relaxation dynamics of polymer chains. POLYM. ENG. SCI., 58:1115–1126, 2018. © 2017 Society of Plastics Engineers  相似文献   

12.
High-quality titanate nanotubes (TiNT) were mixed with modified polypropylene (PP*) by a batch melt-mixing procedure. To improve compatibility between the nanofiller and the matrix, polypropylene (PP) was modified by electron beam irradiation. Effects of TiNT nanoparticles on crystallization, mechanical, thermal and rheological properties of the modified polypropylene were studied and compared with the analogous systems filled with commercial micro- (mTiO2) and nano- (nTiO2) titanium dioxide particles. Nucleation effects of the TiO2-based fillers on PP* crystallization were investigated in detail. The microstructure of the PP*/TiNT nanocomposites shows well-dispersed TiNT sparse aggregates (clouds), penetrated by the polymer. A large-scale structure in the nanocomposite melts confirmed also rheology. In comparison to the matrix characteristics, the stiffness and microhardness of the TiNT nanocomposites increase by 27 and 33 %, respectively. The enhancement in mechanical properties demonstrates that the quality titanate nanotubes can be used as an efficient filler in non-polar polymers using the polymers modified by irradiation. In the case of the nanocomposites containing nTiO2-anatase particles, the increase in these mechanical characteristics is lower. The investigated changes in the rate of crystallization indicate a marked nucleation effect of the nanotubes. The crystallization kinetics data, processed by the Avrami equation, suggest 3-dimensional crystal growth in the polypropylene matrix. The observed improvement in mechanical properties of the TiNT nanocomposites is induced not only by the nanofiller reinforcement but also by the changes of supermolecular structure of the polymer matrix due to nucleated crystallization.  相似文献   

13.
The present work describes the field‐emission properties of multiwalled carbon nanotubes (MWCNTs) coated with conducting polymer polyaniline (PANi). MWCNTs/PANi nanocomposites have been prepared by ex‐ situ polymerization methods and inex‐ situ chemical polymerization and are analyzed by SEM and Raman spectroscopy. It is fairly clear from SEM images that PANi is coated on the surface of MWCNT. SEM image of PANi powder also shows that the powder obtained is PANi nanofibers. It is also observed from SEM images that the shell diameter of MWCNTs depends on PANi content in thenanocomposites. The average outer diameter of MWCNTs increases from 7–15 to 50–80 nm upon PANi coating. Field‐emission study shows that although there is decrease in the value of turnex‐on field Eto and increase in the value field enhancement factor β of the nanocomposites as we go from direct solid‐state mixing method to inex‐ situ chemical polymerization method, the parameters obtained by inex‐ situ polymerization chemical method shows superior field emission. The turn‐on field of the nanocomposites are between 2.5 and 4.5 V/μm and the field enhancement factors are significantly high, between 1.2 × 103 and 9.2 × 103 while. PANi nanofibers does not show any field emission. POLYM. COMPOS. 34:1298–1305, 2013. © 2013 Society of Plastics Engineers  相似文献   

14.
Poly(ethylene terephthalate) (PET)-based nanocomposites with graphene or multi-wall carbon nanotubes (MWCNT) were prepared by melt mixing. Aspect ratio, Af, and interparticle distance, λ, of graphene in the nanocomposites were obtained from melt rheology and transmission electron microscopy respectively. λ of PET/graphene nanocomposites was much smaller than λ in PET/MWCNT. For PET/graphene with highest Af, λ became <1 μm at more than 0.5 wt% graphene. Non-isothermal crystallization behavior from the melt was investigated by differential scanning calorimetry. The crystallization temperatures suggest that the nucleation effect of graphene was stronger than that of MWCNT. The half crystallization time of PET/graphene became longer than PET/MWCNT with increasing graphene loading, suggesting that confinement by graphene suppressed the crystal growth rate. XRD analysis indicated that smaller crystals formed in PET/graphene than in PET/MWCNT. From Raman spectroscopy, the π–π interaction between PET and graphene was stronger than that between PET and MWCNT. This stronger interaction in PET/graphene appears to result in formation of crystals with higher perfection.  相似文献   

15.
The influence of the radiation damage to multi-walled carbon nanotubes (MWCNT) during the high-energy electron irradiation (Ee = 1.8 MeV) with different doses of absorption (Dn = 0.5; 1.0; 1.5 and 2.0 MGy) on their Raman vibrational spectra is studied in detail. The modification of both radial and tangential optical vibrations is observed depending on radiation dose. This is manifested both in the frequency shifts of the vibrational modes and in a change in the intensity of the Raman scattering, which corresponds to different optical vibrations. This behavior of Raman spectrum is explained by appearance and increase in the concentration of radiation defects and by seams of separate layers of nanotubes.  相似文献   

16.
This work demonstrates sequential heating protocol to be an effective method in the reduction of percolation threshold of multiwall carbon nanotube (MWCNT) in (70/30 w/w) poly(methyl methacrylate) (PMMA)/high‐density poly(ethylene) (HDPE)/MWCNT nanocomposites. Here, the percolation threshold (Pc) value was reduced to 0.08 wt % of MWCNT, which is the lowest among the ever reported values of Pc for the PMMA system. Moreover, a co‐continuous morphology of the minor HDPE phase was evident throughout the major PMMA phase in a highly asymmetric composition (70/30 w/w) of the blend constituents. The AC conductivity as well as the dielectric permittivity values were increased with increase in loading of MWCNT in the nanocomposites. The detailed analysis of electrical and morphological properties is discussed in depth in the article. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40235.  相似文献   

17.
Several kinds of (hydrogenated) nitrile elastomer ((H)NBR) compounds were prepared by melt compounding of rubbers with carbon nanotubes. Transmission electron microscopy (TEM) showed that the exfoliation degree of nanotubes was high. Multiwalled carbon nanotubes (MWCNT) were either neat or modified by hydroxyl or carboxyl groups. Morphology was also characterized by scanning electron microscopy (SEM). The cure kinetics of (H)NBR and modified multiwalled carbon nanotubes ((m‐)MWCNT/(H)NBR) nanocomposites was studied. It was found that the apparent curing and over‐cure activation energies (EA and EA,1) increased with the increasing amount of (m‐)MWCNT. There was a less obvious change in the apparent orders of curing reactions. The results of n‐th order and autocatalytic kinetic model showed that any studied content of (m‐)MWCNT could increase effective thermal conductivity, but decreased the vulcanization rate of (m‐)MWCNT/(H)NBR nanocomposites. Finally, the effect of (m‐)MWCNT content and functionalization on tensile mechanical properties was presented. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

18.
《Ceramics International》2016,42(14):15861-15867
A visible light active photocatalyst, Ag/TiO2/MWCNT was synthesized by loading of Ag nanoparticles onto TiO2/MWCNT nanocomposite. The photocatalytic activity of Ag/TiO2/MWCNT ternary nanocomposite was evaluated for the degradation of methylene blue dye under UV and visible light irradiation. Ag/TiO2/MWCNT ternary nanocomposite exhibits (~9 times) higher photocatalytic activity than TiO2/MWCNT and (~2 times) higher than Ag/TiO2 binary nanocomposites under visible light irradiation. The enhancement in the photocatalytic activity is attributed to the synergistic effect between Ag nanoparticles and MWCNT, which enhance the charge separation efficiency by Schottky barrier formation at Ag/TiO2 interface and role of MWCNT as an electron reservoir. Effect of different scavengers on the degradation of methylene blue dye in the presence of catalyst has been investigated to find the role of photogenerated electrons and holes. Simultaneously, the Ag/TiO2/MWCNT shows excellent photocatalytic stability. This work highlights the importance of Ag/TiO2/MWCNT ternary nanocomposite as highly efficient and stable visible-light-driven photocatalyst for the degradation of organic dyes.  相似文献   

19.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

20.
Sensing of low concentrations of two nitroaromatic compounds, 1,2‐dinitrotoluene and 2‐nitrophenol, is presented. The sensing mechanism is based on surface‐enhanced Raman scattering (SERS) using nanostructured tin oxide as the SERS‐active substrate. The SnOx nanostructures are synthesized by a simple solgel method and doped with Ag and Au. The Raman signal of a low concentration of the analyte, otherwise extremely weak, becomes significant when the analytes are attached to these substrates. Doping of SnOx nanopowders with Ag and Au leads to a further increase in the Raman intensities. This study demonstrates the scope of ceramic–metal nanocomposites as convenient solid‐state SERS sensors for low‐level detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号