首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In mobile wireless data access networks, remote data access is expensive in terms of bandwidth consumption. An efficient caching scheme can reduce the amount of data transmission, hence, bandwidth consumption. However, an update event makes the associated cached data objects obsolete and useless for many applications. Data access frequency and update play a crucial role in deciding which data objects should be cached. Seemingly, frequently accessed but infrequently updated objects should have higher preference while preserving in the cache. Other objects should have lower preference or be evicted, or should not be cached at all, to accommodate higher‐preference objects. In this paper, we proposed Optimal Update‐based Replacement, a replacement or eviction scheme, for cache management in wireless data networks. To facilitate the replacement scheme, we also presented two enhanced cache access schemes, named Update‐based Poll‐Each‐Read and Update‐based Call‐Back. The proposed cache management schemes were supported with strong theoretical analysis. Both analysis and extensive simulation results were given to demonstrate that the proposed schemes guarantee optimal amount of data transmission by increasing the number of effective hits and outperform the popular Least Frequently Used scheme in terms of both effective hits and communication cost. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Data caching can significantly improve the efficiency of information access in a wireless ad hoc network by reducing the access latency and bandwidth usage. However, designing efficient distributed caching algorithms is nontrivial when network nodes have limited memory. In this article, we consider the cache placement problem of minimizing total data access cost in ad hoc networks with multiple data items and nodes with limited memory capacity. The above optimization problem is known to be NP-hard. Defining benefit as the reduction in total access cost, we present a polynomial-time centralized approximation algorithm that provably delivers a solution whose benefit is at least 1/4 (1/2 for uniform-size data items) of the optimal benefit. The approximation algorithm is amenable to localized distributed implementation, which is shown via simulations to perform close to the approximation algorithm. Our distributed algorithm naturally extends to networks with mobile nodes. We simulate our distributed algorithm using a network simulator (ns2) and demonstrate that it significantly outperforms another existing caching technique (by Yin and Cao [33]) in all important performance metrics. The performance differential is particularly large in more challenging scenarios such as higher access frequency and smaller memory.  相似文献   

4.
Mobile Ad hoc NETwork (MANET) presents a constrained communication environment due to fundamental limitations of client resources, insufficient wireless bandwidth and users' frequent mobility. Caching of frequently accessed data in such environment is a potential technique that can improve the data access performance and availability. Co‐operative caching, which allows the sharing and co‐ordination of cached data among clients, can further explore the potential of the caching techniques. In this paper, we propose a novel scheme, called zone co‐operative (ZC) for caching in MANETs. In ZC scheme, one‐hop neighbours of a mobile client form a co‐operative cache zone. For a data miss in the local cache, each client first searches the data in its zone before forwarding the request to the next client that lies along routing path towards server. As a part of cache management, cache admission control and value‐based replacement policy are developed to improve the data accessibility and reduce the local cache miss ratio. An analytical study of ZC based on data popularity, node density and transmission range is also performed. Simulation experiments show that the ZC caching mechanism achieves significant improvements in cache hit ratio and average query latency in comparison with other caching strategies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
黄美根  郁滨 《电子学报》2019,47(9):1965-1971
遵循控制转发分离思想,软件定义无线传感器网络(Wireless Sensor Network,WSN)数据转发采用基于流的实现方式.因此,软件定义WSN规则更新过程中节点行为可能违背网络属性一致性.针对此,提出每包前向一致性概念,并证明其可保持所有网络属性的更新一致性.在此基础上,通过引入缓存节点与缓存规则简化规则依赖关系,提出一种规则前向一致更新算法,在满足每包前向一致性的同时,支持规则快速并行更新.实验结果表明,算法在规则开销、更新时间和通信开销等关键性能指标上具有较为明显的优势.  相似文献   

6.
N.  D.  Y.   《Ad hoc Networks》2010,8(2):214-240
The production of cheap CMOS cameras, which are able to capture rich multimedia content, combined with the creation of low-power circuits, gave birth to what is called Wireless Multimedia Sensor Networks (WMSNs). WMSNs introduce several new research challenges, mainly related to mechanisms to deliver application-level Quality-of-Service (e.g., latency minimization). Such issues have almost completely been ignored in traditional WSNs, where the research focused on energy consumption minimization. Towards achieving this goal, the technique of cooperative caching multimedia content in sensor nodes can efficiently address the resource constraints, the variable channel capacity and the in-network processing challenges associated with WMSNs. The technological advances in gigabyte-storage flash memories make sensor caching to be the ideal solution for latency minimization. Though, with caching comes the issue of maintaining the freshness of cached contents. This article proposes a new cache consistency and replacement policy, called NICC, to address the cache consistency issues in a WMSN. The proposed policies recognize and exploit the mediator nodes that relay on the most “central” points in the sensor network so that they can forward messages with small latency. With the utilization of mediator nodes that lie between the source node and cache nodes, both push-based and pull-based strategies can be applied in order to minimize the query latency and the communication overhead. Simulation results attest that NICC outperforms the state-of-the-art cache consistency policy for MANETs.  相似文献   

7.
An ad hoc network is a collection of nodes that do not need to rely on a predefined infrastructure to keep the network connected. Nodes communicate amongst each other using wireless radios and operate by following a peer‐to‐peer network model. In this article, we propose a multifold node authentication approach for protecting mobile ad hoc networks. The security requirements for protecting data link and network layers are identified and the design criteria for creating secure ad hoc networks using multiple authentication protocols are analysed. Such protocols, which are based on zero‐knowledge and challenge‐response techniques, are presented through proofs and simulation results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The MAC protocol for a cognitive radio network should allow access to unused spectrum holes without (or with minimal) interference to incumbent system devices. To achieve this main goal, in this paper a distributed cognitive radio MAC (DCR‐MAC) protocol is proposed for wireless ad hoc networks that provides for the detection and protection of incumbent systems around the communication pair. DCR‐MAC operates over a separate common control channel and multiple data channels; hence, it is able to deal with dynamics of resource availability effectively in cognitive networks. A new type of hidden node problem is introduced that focuses on possible signal collisions between incumbent devices and cognitive radio ad hoc devices. To this end, a simple and efficient sensing information exchange mechanism between neighbor nodes with little overhead is proposed. In DCR‐MAC, each ad hoc node maintains a channel status table with explicit and implicit channel sensing methods. Before a data transmission, to select an optimal data channel, a reactive neighbor information exchange is carried out. Simulation results show that the proposed distributed cognitive radio MAC protocol can greatly reduce interference to the neighbor incumbent devices. A higher number of neighbor nodes leads to better protection of incumbent devices. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Supporting cooperative caching in ad hoc networks   总被引:6,自引:0,他引:6  
Most researches in ad hoc networks focus on routing and not much work has been done on data access. A common technique used to improve the performance of data access is caching. Cooperative caching, which allows the sharing and coordination of cached data among multiple nodes, can further explore the potential of the caching techniques. Due to mobility and resource constraints of ad hoc networks, cooperative caching techniques designed for wired networks may not be applicable to ad hoc networks. In this paper, we design and evaluate cooperative caching techniques to efficiently support data access in ad hoc networks. We first propose two schemes: CacheData, which caches the data, and CachePath, which caches the data path. After analyzing the performance of those two schemes, we propose a hybrid approach (HybridCache), which can further improve the performance by taking advantage of CacheData and CachePath while avoiding their weaknesses. Cache replacement policies are also studied to further improve the performance. Simulation results show that the proposed schemes can significantly reduce the query delay and message complexity when compared to other caching schemes.  相似文献   

10.
Existing cooperative caching algorithms for mobile ad hoc networks face serious challenges due to message overhead and scalability issues. To solve these issues, we propose an adaptive virtual backbone based cooperative caching that uses a connective dominating set (CDS) to find the desired location of cached data. Message overhead in cooperative caching is mainly due to cache lookup process used for cooperative caching. The idea in this scheme is to reduce the number of nodes involved in cache look up process, by constructing a virtual backbone adaptive to the dynamic topology in mobile ad hoc networks. The proposed algorithm is decentralized and the nodes in the CDS perform data dissemination and discovery. Simulation results show that the message overhead created by the proposed cooperative caching technique is very less compared to other approaches. Moreover, due to the CDS based cache discovery we applied in this work, the proposed cooperative caching has the potential to increase the cache hit ratio and reduce average delay.  相似文献   

11.
The problem of cache sharing for supporting data access in mobile ad hoc networks is studied in this paper. The key to this problem is to discover a requested data item in an efficient manner. In the paper, we propose two caching protocols, IXP and DPIP, which distinguish themselves from the existing ones in that they fully exploit in-zone broadcasts to facilitate cache sharing operation. In particular, the DPIP protocol offers an implicit index push property, which is highly useful for enhancing cache hit ratio in the neighborhood of a data requester node. Moreover, our protocols also exploit the broadcasts to facilitate the design of a simple but efficient count-based cache replacement scheme. Performance study shows that the proposed protocols can significantly improve the performance of data access in a mobile ad hoc network.  相似文献   

12.
In the future, most mobile nodes will have multiple radio interfaces, and this feature can be exploited to reduce the transmission cost in wireless data access applications. In this work, we propose cooperative poll-each-read (CoopPER) and cooperative callback (CoopCB) wireless data access algorithms with strong consistency in multi-radio wireless networks. In addition, we investigate CoopPER and CoopCB in heterogeneous wireless networks where CoopPER and CoopCB nodes are mixed. Extensive simulations are done to show the effects of access-to-update ratio, data access pattern, cache size, and cooperation range. Simulation results demonstrate that CoopPER and CoopCB can significantly reduce the expensive transmission cost over wireless links.  相似文献   

13.
The performance of backoff scheme plays an important role in designing efficient Medium Access Protocols for ad hoc networks. In this paper, we propose an adaptive backoff scheme and evaluate the performance of the proposed scheme for ad hoc networks. The backoff mechanism devised by us grants a node access to the channel based on its probability of collision for a transmitted frame in comparison to the nodes in the two‐hop contention area. We use both an analytical model and simulation experiments to evaluate the performance of our adaptive backoff mechanism in an ad hoc network. The results show that our protocol exhibits a significant improvement in power saving, end‐to‐end goodput, packet delivery ratio, and hop‐put, compared with the existing IEEE 802.11 DCF. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We consider ad hoc wireless networks and the topology control problem defined as minimizing the amount of power needed to maintain connectivity. The issue boils down to selecting the optimum transmission power level at each node based on the position information of reachable nodes. Local decisions regarding the transmission power level induce a subgraph of the maximum powered graph Gmax in which edges represent direct reachability at maximum power. We propose a new algorithm for constructing minimum‐energy path‐preserving subgraphs of Gmax, i.e. ones minimizing the energy consumption between node pairs. Our algorithm involves a modification to the medium access control (MAC) layer. Its superiority over previous solutions, up to 60% improvement in sparse networks, demonstrates once again that strict protocol layering in wireless networks tends to be detrimental to performance. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A mobile ad hoc network (MANET) is an autonomous collection of mobile nodes that communicate over relatively bandwidth‐constrained wireless links. MANETs need efficient algorithms to determine network connectivity, link scheduling, and routing. An important issue in network routing for MANETs is to conserve power while still achieve a high packet success rate. Traditional MANET routing protocols do not count for such concern. They all assume working with unlimited power reservoirs. Several ideas have been proposed for adding power‐awareness capabilities to ad hoc networks. Most of these proposals tackle the issue by either proposing new power‐aware routing protocols or modifying existing routing protocols through the deployment of power information as cost functions. None of them deal with counter‐measures that ought to be taken when nodes suffer from low power reserves and are subject to shut down in mid of normal network operations. In this paper, power‐awareness is added to a well‐known traditional routing protocol, the ad hoc on‐demand distance vector (AODV) routing protocol. The original algorithm is modified to deal with situations in which nodes experience low power reserves. Two schemes are proposed and compared with the original protocol using different performance metrics such as average end‐to‐end delays, transmission success rates, and throughputs. These schemes provide capabilities for AODV to deal with situations in which operating nodes have almost consumed their power reserves. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Internet-based mobile ad hoc network (Imanet) is an emerging technique that combines a wired network (e.g. Internet) and a mobile ad hoc network (Manet) for developing a ubiquitous communication infrastructure. To fulfill users’ demand to access various kinds of information, however, an Imanet has several limitations such as limited accessibility to the wired Internet, insufficient wireless bandwidth, and longer message latency. In this paper, we address the issues involved in information search and access in Imanets. An aggregate caching mechanism and a broadcast-based Simple Search (SS) algorithm are proposed for improving the information accessibility and reducing average communication latency in Imanets. As a part of the aggregate cache, a cache admission control policy and a cache replacement policy, called Time and Distance Sensitive (TDS) replacement, are developed to reduce the cache miss ratio and improve the information accessibility. We evaluate the impact of caching, cache management, and the number of access points that are connected to the Internet, through extensive simulation. The simulation results indicate that the proposed aggregate caching mechanism can significantly improve an Imanet performance in terms of throughput and average number of hops to access data items.  相似文献   

17.
Future mobile ad hoc networks are expected to support voice traffic. The requirement for small delay and jitter of voice traffic poses a significant challenge for medium access control (MAC) in such networks. User mobility presents unique difficulties in this context due to the associated dynamic path attenuation. In this paper, a MAC scheme for mobile ad hoc networks supporting voice traffic is proposed. With the aid of a low‐power probe prior to DATA transmissions, resource reservation is achieved in a distributed manner, thus leading to small packet transmission delay and jitter. The proposed scheme can automatically adapt to dynamic path attenuation in a mobile environment. Statistical multiplexing of on/off voice traffic can also be achieved by partial resource reservation for off voice flows. Simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The node throughput, which is defined as the total rate received at each node, is evaluated for the interference limited TDMA and TDMA/CDMA wireless ad hoc networks. In the TDMA wireless ad hoc network, there is only one transmission link connected to each node in the same time slot, whereas in the TDMA/CDMA wireless ad hoc network there are multiple transmission links connected to each node in the same time slot. We first derive the node throughput for these two wireless ad hoc networks and then make a comparison of the node throughput between them. The theoretical results and simulation results both reveal that the TDMA wireless ad hoc network outperforms the TDMA/CDMA wireless ad hoc network in the node throughput. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
High mobility of nodes in vehicular ad hoc networks (VANETs) may lead to frequent breakdowns of established routes in conventional routing algorithms commonly used in mobile ad hoc networks. To satisfy the high reliability and low delivery‐latency requirements for safety applications in VANETs, broadcasting becomes an essential operation for route establishment and repair. However, high node mobility causes constantly changing traffic and topology, which creates great challenges for broadcasting. Therefore, there is much interest in better understanding the properties of broadcasting in VANETs. In this paper we perform stochastic analysis of broadcasting delays in VANETs under three typical scenarios: freeway, sparse traffic and dense traffic, and utilize them to analyze the broadcasting delays in these scenarios. In the freeway scenario, the analytical equation of the expected delay in one connected group is given based on statistical analysis of real traffic data collected on freeways. In the sparse traffic scenario, the broadcasting delay in an n‐vehicle network is calculated by a finite Markov chain. In the dense traffic scenario, the collision problem is analyzed by different radio propagation models. The correctness of these theoretical analyses is confirmed by simulations. These results are useful to provide theoretical insights into the broadcasting delays in VANETs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Mobile Ad Hoc Network (MANET) techniques are critical to the success of emerging modern warfare concepts and are required to support communications for mobile military platforms, including ships, aircrafts, and ground vehicles operating in a highly dynamic and mobile tactical communications network without fixed infrastructure. Research in Mobile Ad Hoc Networking has increased dramatically over the last few years with significant work in hardware architectures, media access and routing protocols. Until now, most of the work has been in simulation and small-scale laboratory demonstrations due to the significant resources required to implement an actual network with sufficient nodes to fully exercise the capabilities of both the hardware and software. There is significant need to develop testbeds to fully understand the behavior of ad hoc networks, performance under real-world application scenarios. This paper describes a testbed for a real system application exercised in an outdoor environment which approximates very closely the physical operational environment. The ad hoc network performance results include throughput and delay under conditions of mobility and foliage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号