首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Quadrature space shift keying (QSSK) modulation combined with cooperative relaying improves the reliability in communication and enhances the overall spectral efficiency. Here, QSSK scheme is analyzed for multiple‐input multiple‐output (MIMO) wireless communication system with dual‐hop amplify‐and‐forward (AF) relaying systems over asymmetric mixed Rayleigh/Rician and symmetric Nakagami‐m/Nakagami‐m fading channels. Analytical expressions for cumulative distribution function (CDF) of the end‐to‐end signal‐to‐noise ratio are derived and used to evaluate the average bit error probability (ABEP) of QSSK modulation in mixed asymmetric and symmetric fading channels. The obtained ABEP expression is in the form of Whittaker function, which can be numerically evaluated using its numerical or series representation. Numerical and simulation results are presented to illustrate the impact of fading parameters on the system performance.  相似文献   

2.
Mobile‐to‐mobile (M‐to‐M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M‐to‐M multiple‐input multiple‐output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double‐correlated Rayleigh‐and‐Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three‐dimensional (3D) M‐to‐M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal‐to‐noise ratio per receive antenna in closed‐form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the xy plane, angle between the xy plane and the antenna array orientation, and degree of scattering in the xy plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a generation procedure of two correlated Nakagami‐m random variables for arbitrary fading parameters values (not necessary identical) is described. For the generation of two correlated Nakagami‐m samples, the proposed method uses the generalized Rice distribution, which appears in the conditional distribution of two correlated Nakagami‐m variables. This procedure can be applied to simulate diversity systems such as selection combiners, equal‐gain combiners, and maximal‐ratio combiners as well as multiple‐input multiple‐output (MIMO) receiver systems, in Nakagami‐m channels. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we propose a novel low‐complexity transmission power adaptation with good bit error rate (BER) performance for multicarrier code‐division multiple‐access (MC‐CDMA) systems over Nakagami‐m fading channels. We first propose a new receiver called ath‐order‐maximal‐ratio‐combining (a‐MRC) receiver with which the receiver power gain for the nth subcarrier is the ath (a?1) power of the corresponding channel gain. Incorporating the a‐MRC receiver, we then propose a new transmission power adaptation scheme where the transmission power is allocated over all the N subcarriers according to the subchannel gains and the transmitter adapts its power to maintain a constant signal‐to‐interference‐plus‐noise (SINR) at the receiver. The proposed scheme has a significant performance gain over the nonadaptive transmission scheme over both independent and correlated fading channels. Moreover, the proposed scheme keeps good BER performance while it is much simpler than the previous power control/adaptation schemes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we propose a cross-layer design framework combining adaptive modulation and coding (AMC) with hybrid automatic repeat request (HARQ) based on rate-compatible low-density parity-check codes (RC-LDPC) in multiple-input multiple-output (MIMO) fading channels with estimation errors. First, we propose a new puncturing pattern for RC-LDPC codes and demonstrate that the new puncturing pattern performs similar to the random puncturing but is easier to apply. Then, we apply RC-LDPC codes with the new puncturing pattern to the cross-layer design combing AMC with ARQ over MIMO fading channels and derive the expressions for the throughput of the system. The effect of channel estimation errors on the system throughput is also investigated. Numerical results show that the joint design of AMC and ARQ based on RC-LDPC codes can achieve considerable spectral efficiency gain.  相似文献   

6.
This paper proposes a new physical‐layer network coding (PNC) scheme, named combined orthogonal PNC (COPNC), for fading two‐way relay channels. The scheme is based on orthogonal PNC (OPNC). In the scheme, the two source nodes employ orthogonal carriers, and the relay node makes an orthogonal combining of the two information bits rather than exclusive or (XOR), which is employed in most PNC schemes. The paper also analyzes the bit error rate (BER) performance of PNC, OPNC, and COPNC for Rayleigh fading model. Simulation results for Rayleigh and Nakagami‐m fading channels show that COPNC can provide outstanding BER performance compared with PNC and OPNC, especially when the uplink channel conditions are asymmetric. The results in Nakagami‐m channels also imply that COPNC will provide higher BER gain with more severe fading depth. Potential works about COPNC are also presented in this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
We consider the minimization of long‐term average power consumption for packet transmission between a mobile station and the base station over Nakagami‐m fading channel. Power consumption is minimized by intelligent transmission scheduling design, with the average queuing delay and joint packet loss across MAC and physical layers being confined below certain levels. The problem is formulated as an infinite horizon constrained Markov decision problem and solved by linear programming (LP) method. The primary intention of this paper is to provide a visible paradigm on using LP method to optimize the performance of mobile wireless communication systems. We elaborate the detailed mathematical solution with consistent simulation experiments and emphasize the effectiveness of adaptive transmission scheduling for cross‐layer QoS provisioning. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
On the basis of a mixture of the selection combining and switch‐and‐stay combining schemes, the enhanced switch combining (ESC) scheme is proposed for antenna diversity over multiple correlated Nakagami‐m fading channels, where a switch window with upper and lower switch thresholds are used. Compared with the existing select‐and‐stay combining or switch with post‐examining, the ESC scheme reduces simultaneous multiantenna observations and hence saves processing time and energy from multibranch observations, while achieving matched receiver performance. Thus, ESC also has better performance than switch‐and‐examine combining (SEC). To assess the reduction of simultaneous observations, a dual‐observation rate is defined. Moreover, the ESC unifies some well‐known switch‐based combining schemes (for example selection combining, switch‐and‐stay combining, or SEC) in the sense that, by adjusting switch thresholds, these combining schemes become different special cases of ESC. The CDF, PDF, and moment generating function of the combined signal‐to‐noise ratio for ESC are derived for general fading channels. Then, the outage probability and the average BER of different binary modulations over correlated Nakagami‐m fading channels are evaluated. Numerical results from analysis and simulation are presented to demonstrate ESC performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Since the publication of Alamouti's famous space‐time block code, various quasi‐orthogonal space‐time block codes (QSTBC) for multi‐input multi‐output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2n (n = 3, 4,…) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum‐likelihood receiver or low‐complexity zero‐forcing receiver.  相似文献   

10.
为了提高无线系统数据速率,目前广泛地采用物理层自适应调制编码(AMC)和链路层自动重发请求(ARQ)协议相结合的跨层设计,这种设计方法能大大提高系统频谱利用率。本文在瑞利衰落信道模型下,在给定包时延和丢包率的情况下,推导出了联合AMC和ARQ的跨层设计频谱利用率的公式。同时也与纯AMC和纯ARQ的情况作了比较。  相似文献   

11.
In this paper, we study the average symbol error rate (SER) for a multiple input multiple output (MIMO) maximal ratio combining (MRC) system with Rayleigh fading desired signal in the presence of non‐Rayleigh fading co‐channel interferers (CCIs) and additive white Gaussian noise (AWGN). To simulate the actual environments of wireless transmission, we assume that the transceiver only obtains imperfect channel estimation (ICE). For the cases of Nakagami and Rician fading CCIs, analytic expressions for the SER have been derived approximately by introducing the modified signal‐to‐interference and noise power ratio (SINR) that can be obtained by averaging the CCI term in the original SINR over the distribution of ICE of intended user. These formulas can provide important reference of design of MIMO diversity systems. Numerical simulations verify the effectiveness of these formulas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a study on the end‐to‐end performance of multi‐hop non‐regenerative relaying networks over independent generalized‐gamma (GG) fading channels is presented. Using an upper bound for the end‐to‐end signal‐to‐noise ratio (SNR), novel closed‐form expressions for the probability density function, the moments, and the moments‐generating function of the end‐to‐end SNR are presented. Based on these derived formulas, lower bounds for the outage and the average bit error probability (ABEP) are derived in closed form. Special attention is given to the low‐ and high‐SNR regions having practical interest as well as to the Nakagami fading scenario. Moreover, the performance of the considered system when employing adaptive square‐quadrature amplitude modulation is further analyzed in terms of the average spectral efficiency, the bit error outage, and the ABEP. Computer simulation results verify the tightness and the accuracy of the proposed bounds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we study the performance of multiple‐input multiple‐output cognitive amplify‐and‐forward relay networks using orthogonal space–time block coding over independent Nakagami‐m fading. It is assumed that both the direct transmission and the relaying transmission from the secondary transmitter to the secondary receiver are applicable. In order to process the received signals from these links, selection combining is adopted at the secondary receiver. To evaluate the system performance, an expression for the outage probability valid for an arbitrary number of transceiver antennas is presented. We also derive a tight approximation for the symbol error rate to quantify the error probability. In addition, the asymptotic performance in the high signal‐to‐noise ratio regime is investigated to render insights into the diversity behavior of the considered networks. To reveal the effect of network parameters on the system performance in terms of outage probability and symbol error rate, selected numerical results are presented. In particular, these results show that the performance of the system is enhanced when increasing the number of antennas at the transceivers of the secondary network. However, increasing the number of antennas at the primary receiver leads to a degradation in the secondary system performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Space–time coded multiple‐input multiple‐output (MIMO) technology is an important technique that improves the performance of wireless communication systems significantly without consuming bandwidth resource. This paper first discusses the characteristics and limitations of traditional symbol‐level space–time coding schemes, which work largely on the basis of an assumption that signals are sent to a block‐fading channel. Therefore, the symbol‐level space–time coding schemes rely on symbol‐level signal processing. Taking advantage of orthogonal complementary codes, we propose a novel MIMO scheme, in this paper, based on chip‐level space–time coding that is different from the traditional symbol‐level space–time coding. With the help of space–time–frequency complementary coding and multicarrier modem, the proposed scheme is able to achieve multipath interference‐free and multiuser interference‐free communications with simple a correlator detector. The proposed chip‐level space–time coded MIMO works well even in a fast fading channel in addition to its flexibility to achieve diversity and multiplexing gains simultaneously in varying channel environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the source‐precoder, multiple‐relay amplifying matrices, and destination‐equalizer joint optimization is investigated in distributed MIMO amplify‐and‐forward multiple‐relay networks with direct source–destination transmission in correlated fading channels. With the use of taking both the direct link and spatial correlation between antenna elements into account, the cooperative transceiver joint design is developed based on the minimum mean‐squared error criterion under individual power constraints at the source and multiple‐relay nodes. Simulation results demonstrate that the cooperative transceiver joint design architecture for an amplify‐and‐forward MIMO multiple‐relay system outperforms substantially the noncooperative transceiver design techniques on the BER performance under the spatial‐correlation channels.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, error performances of multiple‐input multiple‐output systems that employ Alamouti‐coded transmission with transmit antenna selection are examined for binary phase‐shift keying, binary frequency‐shift keying, M‐ary phase‐shift keying, and M‐ary quadrature amplitude‐modulation signals in independent but non‐identically distributed flat Nakagami‐m fading channels. Exact symbol error rate expressions are derived by using the moment‐generating function‐based analysis method. Upper bound expressions have been obtained in order to examine the asymptotic diversity order of transmit antenna selection/Alamouti scheme. Also, outage probability analysis of investigated systems has been given in order to examine the system capacity. Monte Carlo simulations have validated the analytical symbol error rate performance results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, performance of an orthogonal frequency division multiplexing–based variable‐gain amplify and forward cooperative system using multiple relay with relay selection is analyzed over independent but not necessarily identically distributed frequency selective Nakagami‐m fading channels. For the analysis, nonlinear power amplifier is considered at the relay, and selection combining is adopted at destination node. Closed‐form expressions of the outage probability for various threshold signal‐to‐noise ratio (SNR) values and average symbol error rate for M‐ary quadrature amplitude modulation techniques are derived for the considered system. Further, the outage probability analysis is performed in high SNR regime to obtain the diversity order. Furthermore, impact of different fading parameters, multiple relay, and nonlinear power amplifier is highlighted on the outage probability and asymptotic outage probability for various threshold SNRs and on the average symbol error rate for various quadrature amplitude modulation constellations. The derived analytical expressions are generalized for various fading environments while considering the integer‐valued fading parameters. Finally, all the analytical results are verified through the Monte Carlo simulations for various SNR levels and system configurations.  相似文献   

18.
In this paper, an adaptive modulation scheme for the multiple‐input multiple‐output (MIMO) frequency‐selective channels is investigated. We consider a scenario with precoded block‐based transceivers over spatially correlated Rayleigh multipath MIMO channels. To eliminate the inter‐block interference, the zero‐padding is used. The receiver is equipped with a MIMO minimum‐mean‐squared‐error decision feedback equalizer. The precoder aims to force each subchannel to have an identical signal‐to‐interference‐plus‐noise ratio (SINR). To adjust the constellation size, the unbiased mean square error at the equalizer output is sent back to the transmitter. To simplify our analysis, the feedback channel is considered as instantaneous and error free. We first derive the probability density function of the overall SINR for flat fading and frequency‐selective channels. On the basis of the probability density function of the upper bound of the SINR, we evaluate the system performance. We present accurate closed‐form expressions of the average spectral efficiency, the average bit error rate and the outage probability. The derived expressions are compared with Monte Carlo simulation results. Furthermore, we analyze the effect of the channel spatial correlation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The dual‐branch selection‐and‐stay combining (SSTC) is analyzed for diversity reception on independent and correlated Nakagami‐m fading channels, where the conventional selection combining (SC) is employed only at the switching instance, and the receiver uses the selected branch till its signal‐to‐noise ratio (SNR) estimation is lower than a preset threshold. In this combining scheme, the receiver only needs to continuously estimate the SNR of the single selected branch. For the performance analysis of SSTC, the switching rate and the average bit error rates (BERs) of different binary coherent and non‐coherent modulations are evaluated. Numerical results based on the analysis and simulations are illustrated. According to the analysis and numerical results, the SSTC outperforms the existing switch‐and‐stay combining in the senses of the average BER and switching rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Hybrid diversity systems have been of great importance because they provide better diversity orders and robustness to the fading effects of wireless communication systems. This paper focuses on the performance analysis of multiple‐input gle‐output systems that employ combined transmit antenna selection (TAS)/maximal‐ratio transmission (MRT) techniques (i.e., hybrid TAS/MRT). The probability density function, the moment generating function and the n th order moments of the output signal‐to‐noise ratio of the investigated diversity scheme are derived for independent identically distributed flat Nakagami‐m fading channels. The system capacity of the hybrid TAS/MRT scheme is examined from the outage probability perspective. Exact bit/symbol error rate (BER/SER) expressions for binary frequency shift keying, M‐ary phase shift keying and square M‐ary quadrature amplitude modulation signals are derived by using the moment generating function‐based analysis method. By deriving the upper bounds for BER/SER expressions, it is also shown that the investigated systems achieve full diversity orders at high signal‐to‐noise ratios. Also, by Monte Carlo simulations, analytical performance results are validated and the effect of feedback delay, channel estimation error and feedback quantization error on BER/SER performances are examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号