首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(etherimide)s (PEIs) with different chemical structures were synthesized and characterized, which were employed to toughen epoxy resins (EP/PEI) and carbon fiber‐reinforced epoxy composites (CF/EP/PEI). Experimental results revealed that the introduction of the fluorinated groups and meta linkages could help to improve the melt processability of EP/PEI resins. The EP/PEI resins showed obviously improved mechanical properties including tensile strength of 89.2 MPa, elongation at break of 4.7% and flexural strength of 144.2 MPa, and good thermal properties including glass transition temperature (Tg) of 211°C and initial decomposition temperature (Td) of 366°C. Moreover, CF/EP/PEI‐1 and CF/EP/PEI‐4 composites showed significantly improved toughness with impact toughness of 13.8 and 15.5 J/cm2, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The effect of polyurethane on the mechanical properties and Mode I and Mode II interlaminar fracture toughness of glass/epoxy composites were studied. Polyurethanes (PU) synthesized using polyols and toluene diisocyanate were employed as modifier for epoxy resin by forming interpenetrating polymer network. The PU/Epoxy IPN was used as matrix material for GFRP. PU modified epoxy composite laminates having varying PU contents were prepared. The effect of PU content on the mechanical properties like interlaminar fracture toughness (Mode I, G1c and Mode II, GIIc), tensile strength, flexural strength, and Izod impact strength were studied. The morphological studies were conducted on the fractured surface of the composite specimen by scanning electron microscopy (SEM). Tensile strength, flexural strength, and impact strength of PU‐modified epoxy composite laminates were found to increase inline with interlaminar fracture toughness (G1c and GIIc) with increasing PU content to a certain limit and then it was found to decrease with increase in PU content. It was observed that toughening of epoxy with PU increases the Mode I and Mode II delamination toughness up to 17 and 120% higher than that of untoughened composite specimen, respectively. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
Amorphous poly(ether imide) has been used as interlaminar toughening particulate agent in laminated carbon fiber/epoxy composites. Mode I and Mode II delamination fracture toughness was characterized using the double cantilever beam (DCB) and end-notched flexure (ENF) specimens. The delamination surface was examined using a scanning electron microscopy (SEM) to investigate relationships between the morphology and properties. The results revealed that the PEI-modified composites exhibited a significantly increased fracture toughness, which increased with the PEI content. GIC was improved from 165 to 540 J/m2 (at 1 mm/min crosshead speed). GIIC was improved more significantly from 290 to 1300 J/m2. It is believed that these values could be further improved if the processing cycle were to be optimized.  相似文献   

4.
Studies were performed to synthesize new ether modified, flexibilized aromatic diamine hardeners for curing epoxy resins. The effect of moisture absorption on the glass transition temperatures of a tetraglycidyl epoxy, MY 720, cured with flexibilized hardeners and a conventional aromatic diamine was studied. Unidirectional composites, using epoxy-sized Celion 6000 graphite fiber as the reinforcement, were fabricated. The room temperature and 300°F mechanical properties of the composites, before and after moisture exposure, were determined. The Mode I interlaminar fracture toughness of the composites was characterized, using a double cantilever beam technique to calculate the critical strain energy release rate, GIC.  相似文献   

5.
The present paper is concerned with Mode I and Mode II delamination tests performed on three different glass fiber reinforced epoxy composites, chosen to obtain different final structures. The effect of crosshead speed on the fracture resistance of the composites was also analyzed. It was found that Mode I propagation values (GIC) increase as the crosshead speed decreases, probably because of the increase of brittleness in the studied range. An Arrhenius type relation between GIC and the glass transition temperature of the epoxy resin/amine system (Tg) was found. Mode II initiation values (GIICinit) and apparent shear strength (SH) were found to increase with the decrease of Tg. The relation between matrix toughness and composite interlaminar fracture toughness was also considered. Finally, the GIC propagation values were compared to the data available in literature for similar materials.  相似文献   

6.
A series of bio-rubber (BR) tougheners for thermosetting epoxy resins was prepared by grafting renewable fatty acids with different chain lengths onto epoxidized soybean oil at varying molar ratios. BR-toughened samples were prepared by blending BRs with diglycidyl ether of bisphenol A resins, Epon 828 and Epon 1001F, at different weight fractions and stoichiometrically cured using an amine curing agent, 4, 4′-methylene biscyclohexanamine (PACM). Fracture toughness properties of the unmodified and BR toughened polymer samples—including critical strain energy release rate (GIc), and critical stress intensity factor (KIc)—were measured to investigate the toughening effect of prepared BRs. It was found that the degree of phase separation and toughening were more controllable relative to similar polymers cured using the aromatic curing agent Epikure W, and the use of higher molecular epoxy resins produces a synergistic effect increasing the toughness much more than similar polymers made with lower molecular weight epoxy resins. Average BR domain sizes ranging from 200 to 900 nm were observed, and formulations with GIc, values KIc as high as 1.0 kJ/m2 and 1.4 MPa m1/2 were attained respectively for epoxy systems with Tg greater than 130°C.  相似文献   

7.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

8.
The results of a study on the interlaminar fracture toughness properties (G1c) of four unidirectional carbon fiber epoxy materials are presented. The selected materials included Narmco 5245C, Hexcel F584, and American Cyanamid 1806 resins reinforced with Hercules IM6 fibers and for a baseline material Narmco 5208 reinforced with T300 fibers. The G1c values determined on Double Cantilever Beam specimens were found to range from 93 to 370 J/m2. The higher values may partly result from fiber bridging during fracture. This paper discusses specimen configuration, test procedure, and the Scanning Electron Microscope results.  相似文献   

9.
Composites with good toughness properties were prepared from chemically modified soy epoxy resin and glass fiber without additional petroleum based toughening agent. Chlorinated soy epoxy (CSE) resin was prepared from soybean oil. The CSE was characterised by spectral, and titration method. The prepared CSE was blended with commercial epoxy resin in different ratios and cured at 85°C for 3 h, and post cured at 225°C for 2 h using m‐phenylene diamine (MPDA) as curing agent. The cure temperatures of epoxy/CSE/MPDA with different compositions were found to be in the range of (151.2–187.5°C). The composite laminates were fabricated using epoxy /CSE/MPDA‐glass fiber at different compositions. The mechanical properties such as tensile strength (248–299 MPa), tensile modulus (2.4–3.4 GPa), flexural strength (346–379 MPa), flexural modulus (6.3–7.8 GPa) and impact strength (29.7–34.2) were determined. The impact strength increased with the increase in the CSE content. The interlaminor fracture toughness (GIC) values also increased from 0.6953 KJ/m2 for neat epoxy resin to 0.9514 KJ/m2 for 15%CSE epoxy‐modified system. Thermogravimetric studies reveal that the thermal stability of the neat epoxy resin was decreased by incorporation of CSE. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

10.
A high performance copolymer was prepared by using epoxy (EP) resin as matrix and 3,10,17,24-tetra-aminoethoxy lead phthalocyanine (APbPc) as additive with dicyandiamide as curing agent. Fourier-transform infrared spectroscopy, dynamic mechanical analysis (DMA), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TGA) were used to study the curing behavior, curing kinetics, dynamic mechanical properties, impact and tensile strength, and thermal stability of EP/APbPc blends. The experimental results show that APbPc, as a synergistic curing agent, can effectively reduce the curing temperature of epoxy resin. The curing kinetics of the copolymer was investigated by non-isothermal DSC to determine kinetic data and measurement of the activation energy. DMA, impact, and tensile strength tests proved that phthalocyanine can significantly improve the toughness and stiffness of epoxy resin. Highest values were seen on the 20 wt% loading of APbPc in the copolymers, energy storage modulus, and impact strength increased respectively 388.46 MPa and 3.6 kJ/m2, Tg decreased 19.46°C. TGA curves indicated that the cured copolymers also exhibit excellent thermal properties.  相似文献   

11.
Vinylester/epoxy (VE/EP)‐based thermosets of interpenetrating network (IPN) structures were produced by using a VE resin (bismethacryloxy derivative of a bisphenol A–type EP resin) with aliphatic (Al‐EP) and cycloaliphatic (Cal‐EP) EP resins. Curing of the EP resins occurred either with an aliphatic (Al‐Am) or cycloaliphatic diamine compound (Cal‐Am). Dynamic mechanical thermal analysis (DMTA) and atomic force microscopy (AFM) suggested the presence of an interpenetrating network (IPN) in the resulting thermosets. Fracture toughness (Kc) and fracture energy (Gc) were used as the toughness characterization parameters of the linear elastic fracture mechanics. Unexpectedly high Kc and Gc data were found for the systems containing cyclohexylene units in the EP network, such as VE/Al‐EP+Cal‐Am and VE/Cal‐EP+Al‐Am. This was attributed to the beneficial effects of the conformational changes of the cyclohexylene linkages (chair/boat), which were closely analogous to those in some thermoplastic copolyesters. The failure mode of the VE/EP thermoset combinations was studied in scanning electron microscopy (SEM) and discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2124–2131, 2003  相似文献   

12.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

13.
The effects of additives such as boron trifluride-monoethylene amine (BF3MEA) and fumed silica in the TGDDM/DDS epoxy formulations on the curing properties, resin contents, and mechanical properties of their graphite/epoxy (Gr/Ep) composites were investigated. The addition of BF3MEA increased the viscosity of resin as well as the resin contents of cured laminates because of its catalytic effect. Although the fumed silica was considered a thickening agent, it also acted like a co-catalyst with BF3MEA. As the resin content of cured laminates was increased, the excess resin was likely to accumulate in the interlaminar region, which increased the interlaminar shear strength but decreased the flexure strength as well as the interlaminar fracture toughness value, GIC.  相似文献   

14.
The poor cryogenic mechanical properties of epoxy resins restrict their extensive application in cryogenic engineering fields. In this study, a newly synthesized epoxy-functionalized polysiloxane (PSE) is used to improve the cryogenic mechanical properties of bisphenol-F epoxy resin. The Fourier transform infrared spectra and nuclear magnetic resonance confirm the formation of epoxy-functionalized –Si–O–Si– molecular chain. The surface free energy test results show that the PSE has a better compatibility with epoxy resin. The mechanical test results show that the cryogenic tensile strength, failure strain, fracture toughness, and impact strength of epoxy resin is improved significantly by adding the suitable amounts of PSE. Compared to the neat epoxy resin, the maximum tensile strength (196.92 MPa, an improvement of 11.2%), failure strain (2.97%, an improvement of 33.8%), fracture toughness (3.05 MPa·m1/2, an improvement of 30.7%) and impact strength (40.55 kJ m−2, an improvement of 14.8%) at cryogenic temperature (90 K) is obtained by incorporating 10 wt % PSE into the neat epoxy resin. Moreover, the results also indicated that the tensile strength, Young's modulus, and fracture toughness of epoxy resin with the same PSE content at 90 K are higher than that at room temperature (RT). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46930.  相似文献   

15.
Graphene oxide (GO) nanoparticles were introduced in the interlaminar region of carbon fiber–epoxy composites by dispersing it in a thermoplastic polymer carrier such as polyvinylpyrrolidone (PVP). Mode‐I fracture toughness (GIC) was investigated using double cantilever beam testing to evaluate the effect of the GO on the delamination behavior of the composite. The GO content was varied from 0% to 7% by weight as a function of the PVP content. Improvement of ~100% in the Mode I fracture toughness (GIC) was observed compared to composites with no GO. The optimum amount of nanoparticles for improving the interlaminar fracture toughness was found to be ~0.007% by weight of the composite. The increase in the value of flexural strength value was also observed. Scanning electron microscopy of fracture surfaces, X‐ray diffraction, and transmission electron microscopy, and reflectance Fourier transform infrared spectra, as well as Raman spectroscopy results, are presented to support the conclusions. POLYM. ENG. SCI., 59:1199–1208 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
This research investigates the physical and mechanical properties of hybrid composites made of epoxy reinforced by kenaf and flax natural fibers to investigate the hybridization influences of the composites. Pure and hybrid composites were fabricated using bi-directional kenaf and flax fabrics at different stacking sequences utilizing the vacuum-assisted resin infusion method. The pure and hybrid composites' physical properties, such as density, fiber volume fraction (FVF), water absorption capacity, and dimensional stability, were measured. The tests of tensile, flexural, interlaminar shear and fracture toughness (Mode II) were examined to determine the mechanical properties. The results revealed that density remained unchanged for the hybrid compared to pure kenaf/epoxy composites. The tensile, flexural, and interlaminar shear performance of flax/epoxy composite is improved by an increment of kenaf FVF in hybrid composites. The stacking sequence significantly affected the mechanical properties of hybrid composites. The highest tensile strength (59.8 MPa) was obtained for FK2 (alternative sequence of flax and kenaf fibers). However, FK3 (flax fiber located on the outer surfaces) had the highest interlaminar shear strength (12.5 MPa) and fracture toughness (3302.3 J/m2) among all tested hybrid composites. The highest water resistance was achieved for FK5 with the lowest thickness swelling.  相似文献   

17.
Epoxy resins are increasingly finding applications in the field of structural engineering. A wide variety of epoxy resins are available, and some of them are characterized by a relatively low toughness. One approach to improve epoxy resin toughness includes the addition of either a rigid phase or a rubbery phase. A more recent approach to toughen brittle polymers is through interpenetrating network (IPN) grafting. It has been found that the mechanical properties of polymer materials with an IPN structure are fairly superior to those of ordinary polymers. Therefore, the present work deals with epoxy resin toughening using a polyurethane (PU) prepolymer as modifier via IPN grafting. For this purpose, a PU prepolymer based on hydroxyl-terminated polyester has been synthesized and used as a modifier at different concentrations. First, the PU-based hydroxyl-terminated polyester has been characterized. Next, an IPN (Epoxy–PU) has been prepared and characterized using Fourier transform infrared (FTIR) spectroscopy, thin-layer chromatography (TLC), and scanning electron microscopy (SEM) prior to mechanical testing in terms of impact strength and toughness. In this study, a Desmophen 1200-based PU prepolymer was used as a modifier at different concentrations within the epoxy resin. The results also showed that, further to the IPN formation, the epoxy and the PU prepolymer reacted chemically (via grafting). Compared to virgin resin, the effect on the mechanical properties was minor. The impact strength varies from 3–9 J/m and Kc from 0.9–1.2 MPa m1/2. Furthermore, the incorporation of a chain extender with the PU prepolymer as a modifier into the mixture caused a drastic improvement in toughness. The impact strength increases continuously and reaches a maximum value (seven-fold that of virgin resin) at a modifier critical concentration (40 phr). Kc reaches 2.5 MPa m1/2 compared to 0.9 MPa m1/2 of the virgin resin. Finally, the SEM analysis results suggested that internal cavitation of the modifier particles followed by localized plastics shear yielding is probably the prevailing toughening mechanism for the epoxy resin considered in the present study. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2603–2618, 1998  相似文献   

18.
Epoxy resins are increasingly finding applications in the field of structural engineering. A wide variety of epoxy resins are available, and some of them are characterized by relatively low toughness. Several approaches to improve epoxy resin toughness include the addition of fillers, rubber particles, thermoplastics, or their hybrids, as well as interpenetrating networks and flexibilizers, such as polyols. It seems that this last approach did not receive much attention. So in an attempt to fill this gap, the present work deals with the use of hydroxyl‐terminated polyester resins as toughening agents for epoxy resin. For this purpose, the modifier, that is, a hydroxyl‐terminated polyester resin (commercially referred to as Desmophen), which is a polyol, has been used at different concentrations. The prepared modified structure has been characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) prior to mechanical testing in terms of impact strength and toughness. Two types of Desmophen (800 and 1200) have been used as modifiers. The obtained results showed that hydroxyl‐terminated polyester improves the epoxy toughness. In fact, the impact strength increases with Desmophen content and reaches a maximum value of 7.65 J/m at 10 phr for Desmophen 800 and 9.36 J/m at 7.5 phr for Desmophen 1200, respectively. At a critical concentration (7.5 phr), Desmophen 1200 (with higher molecular weight, longer chains, and lower branching) leads to better results. Concerning Kc, the effect of Desmophen 800 is almost negligible; whereas a drastic effect is observed with Desmophen 1200 as Kc reaches a maximum of 2.41 MPa m1/2, compared to 0.9 MPa m1/2 of the unmodified epoxy prior to decreasing. This is attributed to the intensive hydrogen bonding between epoxy and Desmophen 1200, as revealed by FTIR spectroscopy. Finally, the SEM analysis results suggested that the possible toughening mechanism for the epoxy resin being considered, which might prevail, is through localized plastic shear yielding induced by the presence of the Desmophen particles. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 29–38, 1999  相似文献   

19.
Carbon fiber-reinforced epoxy (CF/EP) composites have been widely used in aerospace industry, while poor electrical conductivity and interlaminar shear fracture toughness could reduce their safety as structural components in use. In this work, we achieved simultaneous improvement in electrical conductivity and interlaminar shear strength through interleaved multi-walled carbon nanotubes (MWCNTs) doped thermoplastic polyurethane (TPU) conductive thin films (CTFs), which were prepared by a solution casting method. The experimental results showed that the electrical conductivity of the laminates increased by about 13 and 16 times in the transverse and thickness directions with only about 1 wt % MWCNTs content in the laminates. The end-notch flexure (ENF) tests showed that the mode II interlaminar fracture toughness (GIIC) of composites with 10 wt % MWCNTs CTF interleaf shows a significant increase of about 106%. The enhancement mechanism was further explored through microscopic morphological observation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47988.  相似文献   

20.
为了改善碳纤维/环氧树脂(CF/EP)层合板层间断裂韧性较差的问题,采用预浸料层间涂层和模压工艺制备聚醚醚酮(PEEK)层间增韧CF/EP层合板。探究PEEK含量对CF/EP层合板Ⅱ型层间断裂韧性和冲击强度的影响。结果表明:PEEK的加入有效提高CF/EP层合板的Ⅱ型层间断裂韧性和冲击强度。当PEEK含量为2%,层合板的断裂韧性和冲击强度分别达到1 253 J/m2和259 kJ/m2,与纯层合板相比分别提高61.5%和32.8%。实验分析PEEK增韧机理,为研究高附加值复合材料产品提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号