首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In order to tailor the surface properties of propellants to meet the requirements of progressive burning and anti‐erosion performance of propellant for high loading density tank guns, the surface migration and enrichment effects of fluorinated TiO2 nanocomposite additives with low surface energy toward the air/solid interface of propellants were investigated. Fluorinated TiO2 nanocomposites were prepared by emulsion polymerization and characterized by FT‐IR spectroscopy, TEM, and TGA to obtain the information of chemical groups, morphology, and thermal stability. The propellant samples containing the fluorinated TiO2 nanocomposite additives were manufactured by an extrusion process. The migration effect of the fluorinated TiO2 nanocomposite additives was observed by SEM and X‐ray energy dispersive analysis. The influence factors on the migration and enrichment properties of fluorinated TiO2 nanocomposite additives in propellants were discussed. The results showed that there exists a gradient distribution of fluorine element in the additive modified propellants, indicating a significant surface enrichment of fluorinated groups inside the propellants. The composition of propellants and the chain structure of fluoropolymer also have a significant influence on the migration and enrichment properties of fluorinated TiO2 nanocomposite additives in propellants. This study can bring forward the research of smart construction of slowing burning and anti‐wear layers in the propellants.  相似文献   

2.
A pilot scale fluidized bed process was developed for preparing porous ammonium perchlorate (PAP) in various particle sizes. The oxidizer, ammonium perchlorate (AP), of composite solid propellant was partially replaced by PAP which was obtained by the fluidization process. The burning rate of propellants containing PAP was found to increase as compared with that of propellants without PAP. In the present study, the effects of percentage content and particle size of PAP incorporated in propellant compositions, on the burning rate were investigated. The results showed that the burning rate increases with increasing of PAP content and with decreasing of PAP particle size for trimodal oxidizer propellants.  相似文献   

3.
This paper reports a series of experiments involving ammonium dinitramide (ADN), a new energetic oxidizer of potential use in composite solid propellants. The experiments include (a) self‐deflagration of pressed pellets of ADN; (b) combustion of sandwiches with ADN laminae on both sides of a binder lamina that is either “pure” or filled with particulate oxidizer and other additives; and, (c) combustion of propellants with a bimodal oxidizer size distribution, wherein, combustion of coarse ADN and fine AP (ammonium perchlorate) and vice versa were used, in addition to mixtures of coarse ADN and AP, fine ADN and AP, and all‐ADN or all‐AP formulations.  相似文献   

4.
Ammonium nitrate (AN)‐based composite propellants have attracted much attention, primarily because of the clean burning nature of AN as an oxidizer. However, such propellants have some disadvantages such as poor ignition and low burning rate. Ammonium dichromate (ADC) is used as a burning catalyst for AN‐based propellants; however, the effect of ADC on the burning characteristics has yet to be sufficiently delineated. The burning characteristics of AN/ADC propellants prepared with various contents of AN and ADC have been investigated in this study. The theoretical performance of an AN‐based propellant is improved by the addition of ADC. The increase in the burning rate is enhanced and the pressure deflagration limit (PDL) becomes lower with increasing amount of ADC added. The increasing ratio of the burning rate with respect to the amount of ADC is independent of the AN content and the combustion pressure. The optimal amount of ADC for improving the burning characteristics has been determined.  相似文献   

5.
The burning rate of AP/HTPB composite propellant increases with increasing AP content and with decreasing AP size. In addition, the burning rate can be enhanced with the addition of Fe2O3. The burning characteristics and thermal decomposition behavior of AP/HTPB composite propellant using coarse and fine AP particles with and without Fe2O3 at various AP contents were investigated to obtain an exhaustive set of data. As the AP content decreased, the burning rate decreased and the propellants containing less than a certain AP content self‐quenched or did not ignite. The self‐quenched combustion began at both lower and higher pressures. The lower limit of AP content to burn the propellant with coarse AP was lower than that with fine AP. The lower limit of AP content to burn was decreased by the addition of Fe2O3. The thermal decomposition behavior of propellants prepared with 20–80 % AP was investigated. The decrease in the peak temperature of the exothermic decomposition suggested an increased burning rate. However, a quantitative relationship between the thermochemical behavior and the burning characteristics, such as the burning rate and the lower limit of AP content to burn, could not be determined.  相似文献   

6.
Modern chemical synthesis techniques have allowed for improved incorporation of nano‐scale additives into solid propellants. Various methods were implemented to incorporate titania nanoparticles into three representative ammonium perchlorate composite propellants (APCP), and the mechanical properties of each formulation were tested and compared to those of an analogous baseline. Advanced imaging techniques were applied to all particle synthesis methods to characterize particle size and particle network type and size. Uniaxial tensile testing was performed to measure propellant ultimate strength, ductility, and elastic modulus. In general, the addition of nano‐titania additives to the propellant decreased propellant strength and modulus, but improved ductility. Propellant formulations containing in‐situ titania exhibited an increase in ductility of 11 %, 286 %, and 186 % with a corresponding reduction in strength of 82 %, 52 %, and 17 % over analogous baselines. These trends corresponded to a simultaneous decrease in propellant density, indicating that when implementing nano‐sized additives, care must be taken to monitor the effect of the altered manufacturing techniques on propellant physical properties in addition to just monitoring burning rates. Tailoring of propellant manufacturing procedures and the addition of Tepanol bonding agent to an in‐situ APCP formulation fully recovered the propellant density and ultimate strength while retaining the enhanced ductility.  相似文献   

7.
This study acquired, classified, and analyzed more than 3500 repeated‐measured steady state strand burner burning rate data from our quality control data bank as well as from open literature. The large size of consistent data from our resource were employed for the construction of a model that correlates burning rate standard deviations with average burning rates for both within‐batch lots and among‐batch lots. An increase in standard deviations with burning rates was observed for both correlations. Both correlations exhibit an R2‐statistic larger than 0.82 within burning rate range of 3.4–38.6 mm s−1, and both correlations provide predictions in good agreements with some good quality published data. These two correlations may serve as feasible burning rate standard deviation tolerance reference when conducting composite propellants production quality control or burning rate data reproducibility checkup. Moreover, the confidence limits of parameters from the derived within‐batch correlation equation allow assessing the maximum pressure‐exponent uncertainties within selected burning rate range, thus provide insightful considerations to pressure‐exponent tolerance assignment for propellants under development or production.  相似文献   

8.
A simplified mechanism of the plasma effect on the combustion on different types of propellants is presented. The model provides a semi‐quantitative prediction of the burning rate enhancement that should be expected for a given propellant composition and structure. Depending on the propellant structure and composition, one expects a burning rate enhancement either to disappear or to survive a certain time after the plasma injection has been turned off. In order to estimate the internal front propagation rate, we have built a simplified model of the RDX ignition inside the matrix. A cubic lattice topology has been assumed and the ignition front extends from one layer to its nearest neighbor. The propagation rate was found to be dependent on the lattice constant, the particle size, the thermo‐chemical properties of the RDX particles and the matrix background.  相似文献   

9.
Ammonium dinitramide (ADN) is a high performance solid oxidizer of interest for use in high impulse and smokeless composite rocket propellant formulations. While rocket propellants based on ADN may be both efficient, clean burning, and environmentally benign, ADN suffers from several notable disadvantages such as pronounced hygroscopicity, significant impact and friction sensitivity, moderate thermal instability, and numerous compatibility issues. Prilled ADN is now a commercially available and convenient product that addresses some of these disadvantages by lowering the specific surface area and thereby improving handling, processing, and stability. In this work, we report the preparation, friction and impact sensitivity and mechanical properties of several smokeless propellant formulations based on prilled ADN and isocyanate cured and plasticized glycidyl azide polymer (GAP) or polycaprolactone‐polyether. We found such propellants to have very poor mechanical properties in unmodified form and to display somewhat unreliable curing. However, by incorporation of octogen (HMX) and a neutral polymeric bonding agent (NPBA), the mechanical properties of such smokeless formulations were significantly improved. Impact and friction sensitivities of these propellants compare satisfactorily with conventional propellants based on ammonium perchlorate (AP) and inert binder systems.  相似文献   

10.
Ammonium nitrate (AN)‐based composite propellants have attracted a considerable amount of attention because of the clean burning nature of AN as an oxidizer. However, such propellants have several disadvantages such as poor ignition and a low burning rate. In this study, the burning characteristics of AN‐based propellants supplemented with Fe2O3 as a burning catalyst were investigated. The addition of Fe2O3 is known to improve the ignitability at low pressure. Fe2O3 addition also increases the burning rate, while the pressure exponent generally decreases. The increasing ratio (R) of the burning rate of the AN/Fe2O3 propellant to that of the corresponding AN propellant vs. the amount of Fe2O3 added (ξ) depends on the burning pressure and AN content. R decreases at threshold value of ξ. The most effective value of ξ for increasing the burning rate was found to be 4 % for the propellant at 80 % AN, and the value generally decreased with decreasing AN content. According to thermal decomposition kinetics, Fe2O3 accelerates the reactions of AN and binder decomposition gases in the condensed‐ and/or gas‐phase reaction zones. The burning characteristics of the AN‐based propellant were improved by combining catalysts with differing catalytic mechanisms instead of supplementing the propellant with a single catalyst owing to the multiplicative effect of the former.  相似文献   

11.
The hydroxy‐terminated polybutadiene (HTPB) based composite propellants without any metal additive and with varying concentration of metal additives such as iron oxide, copperchromite, strontium carbonate and lithium fluoride have been cast and cured. These propellants have been characterized for density and calorimetric value (cal‐val). Further, their temperature sensitivity has also been determined from the burning rates calculated from the P‐t profiles obtained on static evaluation of Ballistic Evaluation Motor (BEM) after conditioning at different temperatures. The data indicate that iron oxide is best to enhance burning rates and at the same time, to reduce temperature sensitivity.  相似文献   

12.
This work focuses on solid energetic materials designed to produce high‐pressure gas for pressurizing or inflating devices. In small gas generators sodium azide is often used. Unfortunately, this chemical exhibits drawbacks concerning toxicity and yield of gas. Other classical gas‐generating agents are double base propellants. However, they deliver toxic and reactive gases and their combustion temperatures are high. In previous work a series of alternative gas‐generating compositions have been proposed, fuelled with double base propellants, azodicarbonamide, nitroguanidine or guanidine nitrate and oxidized with potassium nitrate or potassium perchlorate. They were theoretically and experimentally evaluated on a series of combustion properties, such as ignition delay, burning rate, vivacity, specific energy, etc. The purpose of this paper is to experimentally examine the gas production of the previously proposed compositions. The yield of gas is determined through static pressure measurements after a closed vessel test, while the composition of the combustion gases is investigated through gas analysis. The addition of an oxidizer causes a significant drop in the yield of gas, but avoids the formation of hazardous gases, such as H2 and CO, in most of the studied cases. The only exception is the mixture of a double base propellant with potassium nitrate: potassium nitrate does not fully react with the double base propellant and therefore the formation of CO and H2 is not prevented.  相似文献   

13.
The influence of two selected bistetrazoles, 5,5′‐bis(1H‐tetrazolyl)‐amine (BTA) and 5,5′‐hydrazinebistetrazole (HBT), on the combustion behavior of a typical triple‐base propellant was investigated. Seven propellant formulations, one reference and six others incorporating 5 %, 15 %, and 25 % of either HBT or BTA compounds, respectively, were mixed and extruded into a cylindrical, no perforations, geometry. The resulting propellants showed high burning rates, up to 93 % higher than the reference formulation at 100 MPa. However, the increase in burning rates came at the cost of higher burning rate dependency on pressure, with a pressure exponent as high as 1.4 for certain formulations. HBT‐containing propellants showed notably lower flame temperature when compared to the reference formulation, with a flame temperature reduction of up to 461 K for the propellant containing 25 % HBT. The thermal behavior of the propellants was also investigated through DSC experiments. The addition of bistetrazoles provided lower decomposition temperatures than the pure nitrogen‐rich materials, indicating that the two compounds probably react readily with the −ONO2 groups present in the nitrocellulose and the plasticizers used in the formulation. The onset temperature of all propellants remained within acceptable ranges despite the observed decrease caused by the addition of the bistetrazole compounds.  相似文献   

14.
The effect of fuel particle size as well as the influence of inert and reactive additives on the burning rate of the Si‐CaSO4 composition was evaluated. The burning rate decreased with increase in fuel particle size, while the enthalpy remained constant. Addition of fuels to the base composition increased the burning rate, with an increase from 12.5 mm ⋅ s−1 to 43 mm ⋅ s−1 being recorded upon 10 wt‐% Al addition. Ternary mixtures of silicon, calcium sulfate, and an additional oxidizer generally decreased the burning rate, with the exception of bismuth trioxide, where it increased. The Si‐CaSO4 formulation was found to be sensitive to the presence of inert material, addition of as little as 1 wt‐% fumed silica stifled combustion in the aluminum tubes.  相似文献   

15.
A new model is derived to estimate the size and fraction of aluminum agglomerates at the surface of a burning propellant. The basic idea relies on well‐known pocket models in which aluminum is supposed to aggregate and melt within pocket volumes imposed by largest oxidizer particles. The proposed model essentially relaxes simple assumptions of previous pocket models on propellant structure by accounting for an actual microstructure obtained by packing. The use of statistical tools from stochastic geometry enables to determine a statistical pocket size volume and hence agglomerate diameter and agglomeration fraction. Application to several AP/Al propellants gives encouraging results that are shown to be superior to former pocket models.  相似文献   

16.
Combustion of mixtures of a narrow fraction of ammonium perchlorate (AP) with hydrocarbon binders and combustion catalysts diethylferrocene and 1,1′-bis(dimethyloctyloxysilyl)ferrocene, as well as nano-sized Fe2O3 is studied. It is shown that the efficiency of ferrocene compounds from the viewpoint of increasing the burning rate depends on the oxidizer/fuel ratio in the propellant and on the place of the leading reaction of combustion. In composites with a high oxidizer/fuel ratio whose combustion follows the gas-phase model, the catalyst efficiency is rather low. In systems with a low oxidizer/fuel ratio where the contribution of condensed-phase reactions to the burning rate of the system is rather large, the catalyst efficiency is noticeably greater, and it is directly related to the possibility of formation of a soot skeleton during combustion. The close values of the catalytic activity of ferrocenes and Fe2O3 in the case of their small concentrations in such compositions testify that the main contribution to the increase in the propellant burning rate is made by Fe2O3 formed due to rapid oxidation of ferrocene on the AP surface and accumulated on the soot skeleton. Thermocouple measurements of propellants with a low oxidizer/fuel ratio are performed, and it is shown that the temperature of their surface is determined by plasticizer evaporation. A phenomenological model of combustion of the examined propellants is proposed.  相似文献   

17.
Burning rate measurements were carried out for ammonium perchlorate/hydroxyl‐terminated polybutadiene (AP/HTPB) composite propellants with iron (Fe) nanoparticles as additives. Experiments were performed in a strand burner at pressures from 0.2 to 10 MPa for propellants containing approximately 80 % AP and Fe nanoparticles (60–80 nm) at concentration from 0 to 3 % by weight. It was found that the addition of 1 % Fe nanoparticles increased burning rate by factors of 1.2–1.6. Because Fe nanoparticles are oxidized on the surface and have high surface‐to‐volume ratio, they provide a large surface area of Fe2O3 for AP thermal decomposition catalysis at the burning propellant surface, while also providing added energy release due to the oxidation of nanoparticle sub‐shell Fe. The increase in burning rate due to Fe nanoparticle content is similar to the increase in burning rate caused by the addition of iron oxide (Fe2O3) particles observed in prior literature.  相似文献   

18.
This paper presents burning rates as a function of pressure of several propellant formulations based on ammonium perchlorate (AP) and hydroxyl-terminated polybutadiene cured by isophorone diisocyanate, many of which exhibit significantly low (nearly zero or negative) values of the pressure exponent of the burning rate in distinct pressure ranges, termed as plateau burning rate trends. The propellants contain a bimodal distribution of AP particles with the size of the coarse and fine particles within narrow ranges whose mean values are widely separated. Two mean sizes of fine particles were considered for the propellant formulations in the present work, namely, 5 and 20 μm. These choices are based on the mid-pressure extinction behavior exhibited by the matrix of fine AP and binder contained in the propellants but when tested alone over a wide range of fine AP size and pressure. The propellants that include the fine AP/binder matrixes exhibiting a mid-pressure extinction, in turn, exhibit the plateau burning rate trends within the corresponding pressure ranges. A plateau is also observed at elevated pressures in the burning rates of some formulations, which is related to the diminishing relative importance of the near-surface leading-edge region of the oxidizer/fuel diffusion flame in the gas-phase combustion zone. The choice of the coarse AP size influences the exact pressure range within the mid-pressure extinction domain of the matrix where the propellant exhibits the plateau burning rate trends. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 4, pp. 73–81, July–August, 2007.  相似文献   

19.
The novel grain‐binding high burning rate propellant (NGHP) is prepared via a solventless extrusion process of binder and spherical propellant grains. Compared with the traditional grain‐binding porous propellants, NGHP is compact and has no interior micropores. During the combustion of NGHP, there appear honeycomb‐like burning layers, which increase the burning surface and the burning rate of the propellant. The combustion of NGHP is a limited convective combustion process and apt to achieve stable state. The larger the difference between the burning rate of the binder and that of the spherical granular propellants exists, the higher burning rate NGHP has. The smaller the mass ratio of the binder to the spherical granular propellants is, the higher the burning rate of NGHP is. It shows that the addition of 3 wt.‐% composite catalyst (the mixture of lead/copper complex and copper/chrome oxides at a mass ratio of 1 : 1) into NGHP can enhance the burning rate from 48.78 mm⋅s−1 in the absence of catalyst to 56.66 mm⋅s−1 at P=9.81 MPa and decrease the pressure exponent from 0.686 to 0.576 in the pressure range from 9.81 to 19.62 MPa.  相似文献   

20.
A nanocomposite microsphere consisting of solid paraffin, nano‐TiO2, nano‐BN, zeolitic imidazolate framework‐67 particles and polymethyl methacrylate was prepared and applied as a functional additive for high energy propellants (with about 23 wt % RDX) to reduce the barrel erosion and improve its combustion performance as well. High energy propellants modified with the nanocomposite were manufactured by a solvent extrusion technique. According to the scanning electron microscope and differential scanning calorimetry results, there exists a good compatibility between the nanocomposite and propellant matrix. The energy and combustion performance as well as erosion of the modified propellants were studied by a closed bomb test and an erosion tube device, respectively. Results showed that compared with the unmodified propellant, both the erosion and energy performance of modified high energy propellant gradually decreased with the increase of nanocomposites contents. When the content of nanocomposites was 5.1 %, the erosion mass of the modified propellant reduced to 37.0 % while the propellant force only decreased 5.7 %, indicating that the nanocomposite has enormous ability to improve gun erosion resistance while barely affect energy performance of propellant. Furthermore, the closed bomb burning curves of the samples showed that addition of nanocomposites to propellant matrix could prolong the combustion time, efficiently inhibit the initial generation rate of combustion gas, and further achieve the progressive burning of the propellants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号