共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation deals with the thermo‐mechanical recycling of post consumer milk pouches (LDPE‐LLDPE blend) and its use as jute fiber composite materials for engineering applications. The mechanical, thermal, morphological, and dynamic‐mechanical properties of recycled milk pouch‐based jute fiber composites with different fiber contents were evaluated and compared with those of the virgin LDPE‐LLDPE/jute fiber composites. Effect of artificial weathering on mechanical properties of different formulated composites was determined. The recycled polymer‐based jute fiber composites showed inferior mechanical properties as well as poor thermal stability compared to those observed for virgin polymer/jute fiber composites. However, the jute‐composites made with (50:50) recycled milk pouch‐virgin LDPE‐LLDPE blend as polymer matrix indicated significantly superior properties in comparison to the recycled milk pouch/jute composites. Overall mechanical performances of the recycled and virgin polymeric composites were correlated by scanning electron microscopy (SEM). The dynamic mechanical analysis showed that storage modulus values were lower for recycled LDPE‐LLDPE/jute composites compared to virgin LDPE‐LLDPE/jute composites throughout the entire temperature range, but an increase in the storage modulus was observed for recycled‐virgin LDPE‐LLDPE/jute composites. POLYM. COMPOS. 28:78–88, 2007. © 2007 Society of Plastics Engineers 相似文献
2.
Polymer nanocomposites and their behavior have been widely investigated by several paths, including mechanical, rheological, and permeability tests, finding that several parameters (such as the polymer matrix, the nanofiller, their amounts, the presence of compatibilizers, processing parameters, etc.) can influence the main properties. However, less information is available regarding the creep response of polymer nanocomposites; in particular, few or no data are reported about the combined effect of different loads and different temperatures. In this article, the creep behavior of a low density polyethylene/organomodified clay nanocomposite has been investigated. The characterization of viscoelastic response has taken into account both the effects of applied load and temperature, which are often considered separately. Dynamic–mechanical and structural analysis was also performed in order to get a deeper understanding of the involved phenomena. The nanocomposite showed lower creep deformations (up to ~20%) and the relative differences with the neat polymer matrix were found to be increasing upon increasing the applied load (up to ~24%) and the temperature (up to ~38%). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44180. 相似文献
3.
4.
In this research, highly open‐cell low‐density polyethylene sheet foams are achieved with an annular die by applying various strategies for cell opening, i.e., (i) creation of a structural nonhomogeneity consisting of hard and soft regions with partial crosslinking, (ii) blending of a hard second‐phase material (i.e., polystyrene phase) into the low‐density polyethylene matrix, (iii) plasticization of the soft region with a secondary blowing agent, (iv) decrease of the cell wall thickness by increasing the cell density, and (v) decrease of the cell wall thickness by increasing the expansion ratio while cell walls are soft. Although the higher surface‐to‐volume ratio of the sheet foams compared with filament foams made it challenging to prevent gas loss, highly open‐cell (up to 99%) and microcellular (up to 3.5 × 1010 cells/cm3) foam sheets were successfully manufactured with high‐pressure annular dies using the cell‐opening strategies. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3376–3384, 2006 相似文献
5.
6.
Low‐density polyethylene (LDPE)‐coated sisal fiber prepreg was prepared by using solution coating process. These coated fiber prepregs were consolidated to make composites having different weight fraction of sisal fibers in a hot compression‐molding machine. This experimental study reveals that higher loading of sisal fiber up to 57wt% in LDPE–sisal composites is possible by this technique. Mechanical and abrasive wear characteristics of these composites were determined. The tensile strength of composites increased with the increase in sisal fiber concentration. Coating thickness of LDPE was varied by changing the viscosity of LDPE–xylene solution that manifested to different weight fraction of fiber in sisal–LDPE composites. Mechanical, dynamic mechanical, and abrasive wear characteristics of these composites were determined. The tensile strength and modulus of sisal composites reached to 17.4 and 265 MPa, respectively, as compared to 7.1 and 33MPa of LDPE. Storage modulus of sisal composites LD57 reached to 2.7 × 109 MPa at 40°C as compared to 8.1 × 108 MPa of LDPE. Abrasive wear properties of LDPE and its composites were determined under multi‐pass mode; pure LDPE showed minimum specific wear rate. The specific wear rate of composites decreased with the sliding distance. Increase of coated sisal fiber content increased the specific wear rate at all the sliding distances, which has been explained on the basis of worn surface microstructures observed by using SEM. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers 相似文献
7.
An experimental study and a numerical modeling analysis are carried out to examine the effects of fiber‐fiber interactions and coupling between fiber orientation and polymer chains conformation on the rheological properties of fiber suspensions. The experimental study allowed examination of large fiber volume fractions up to 35% over a range of shear rates that spans eight decades. This study confirmed already known results and led to new ones. In particular, a peak in the steady shear viscosity at the low shear rate region is observed at large volume fractions. Furthermore, new results regarding the applicability of the Cox‐Merz rule, the behavior of the damping factor, and the end pressure drops are reported, and physical interpretations are proposed. The results of the numerical modeling showed that it is necessary to account for the polymer‐fiber coupling factor to obtain a good fit between the model predictions and the experimental measurements. Comparisons between the model predictions and the experimental measurements allowed study of the variation of the parameters that govern the fiber‐fiber interactions and the polymer‐fiber coupling with the properties of the suspension and the flow. POLYM. ENG. SCI., 45:385–399, 2005. © 2005 Society of Plastics Engineers 相似文献
8.
Thermo‐mechanical degradation of LDPE‐based nanocomposites was studied by mainly investigating the rheological properties. For all of the investigated processing conditions, the viscosity of the nanocomposites was higher than that of the pure‐LDPE matrix, but on increasing the severity of the mixing conditions, the difference between the viscosity of the nano‐filled polymer and that of the pure LDPE decreased. The X‐ray traces of the nanocomposites suggest that intercalation has been achieved during the melt, when less‐severe processing conditions were used. At severe processing conditions (longer mixing time, high temperature and shear stress) the thermo‐mechanical degradation was accelerated, possibly due to the loss of mass from the organoclay galleries. The variations of the viscosity in the presence of two organo‐modified montmorillonite (MMt) clays were compared to the ones observed with a MMt clay at different processing conditions.
9.
The dependence of the viscosities of highly concentrated suspensions on solids concentrations and particle size distributions is investigated by using an orifice viscometer. Based on the extensive amount of data on pertinent systems, an empirical equation which correlates the relative viscosities of suspensions (or relative moduli of filled polymeric materials) as a function of solids concentrations and particle size distributions is proposed. The equation has a constant which characterizes size distributions of spherical particles and can be determined experimentally without measuring viscosities. For uniform-size spherical particles, it reduces to the well-known Einstein equation at dilute solids concentrations. 相似文献
10.
M.H. Talou M.A. VillarM.A. Camerucci R. Moreno 《Journal of the European Ceramic Society》2011,31(9):1563-1571
One of the forming methods developed for the manufacture of porous materials by direct consolidation, in which a ceramic suspension consolidates into non-porous molds (e.g. metal molds) by thermogelation of an organic agent, uses starch as both consolidator/binder of the ceramic suspension and pore former at high temperature. Changes in the rheological behavior of the aqueous suspensions are produced by starch gelatinization thermal process. This process as well as the presence of both the ceramic particles and added processing additives, influences the kinetics of green ceramic body formation and its microstructural features.In this work, the thermogelling behavior of mullite aqueous suspensions (40 vol.%; 0.45 wt.% of a polyacrylic polyelectrolyte as dispersant) containing 10 vol.% of different native starches (potato, cassava, and corn) was studied by dynamic rheology in order to determine the experimental conditions that must be used for forming mullite green bodies by thermal consolidation. Viscoelastic properties (G′ and G″) as a function of temperature (30-95 °C) and deformation (0.1-625.0% at 40 °C) were determined by temperature sweep tests and dynamic strain sweep tests, respectively. From these tests, and considering previous results of the rheological behavior of starch suspensions, we analyzed the influence of ceramic particles on the starch gelatinization process and the strength of the developed gels. On the other hand, shear flow properties of aqueous mullite-starch suspensions were also analyzed to obtain information on the rheological behavior of the suspensions at room temperature. 相似文献
11.
Sheng Chang Anthony G Fane 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2000,75(7):533-540
Injecting air into hollow fibers and tubular membranes has been proved to be effective in order to control flux decline caused by concentration polarization and particle deposition. This paper presents a study of the characteristics of filtration with inter‐fiber two‐phase flow. The enhancement of flux by bubbling, the effect of the total superficial velocity and gas and liquid velocities, the effect of fiber spacing and orientation, and the concept of critical flux were investigated. A specially designed crossflow hollow fiber cell connected to a light microscope and video‐camera system has been used to monitor particle deposition on the fibers. The results showed that injecting air could enhance the permeate flux and control the deposition of particles on the membrane fibers. Changes in the hydrodynamics of two‐phase flow considerably affected the filtration resistance caused by reversible fouling but was ineffective for the resistance caused by irreversible fouling. The extent of deposition was mainly controlled by the flux level in the range of wall shear rates examined. A critical flux of about 10 dm3 m−2 h−1 was identified through direct observation of particle deposition on fibers. This value correlated with the flux at which the irreversible fouling became negligible. These results should be significant for optimizing the operation of submerged membrane bioreactor wastewater systems in which bubbling is used as a hydrodynamic technique to improve the performance of the membrane process. © 2000 Society of Chemical Industry 相似文献
12.
Horizontal Dip‐Spin Casting of aqueous alumina‐polyvinylpyrrolidone suspensions with chopped fiber 下载免费PDF全文
Valerie Wiesner Manuel Acosta Lisa Rueschhoff Jeffrey Youngblood Rodney Trice 《International Journal of Applied Ceramic Technology》2017,14(6):1077-1087
A novel ceramic processing method, called Horizontal Dip Spin Casting (HDSC), enabled fabrication of tubular ceramic parts with an aligned chopped fiber phase. HDSC was demonstrated using highly loaded aqueous alumina suspensions with >50 vol.% solids loading and ≤5 vol.% water‐soluble polymer employed as a rheological modifier. Chopped carbon fibers were added to the suspensions to attain maximum loadings of 30 vol.%. During forming, cylindrical foam molds were dipped into the suspension while being rotated radially about the long axis. Simultaneously, a doctor blade was placed at a specified distance from the foam surface to facilitate the flow of the suspension to align the fiber and control the thickness of the material that accrued on the mold. Rheological study of alumina‐PVP suspensions with and without chopped carbon fiber showed that the suspensions exhibited a yield‐pseudoplastic flow behavior. The degree of alignment of the carbon fiber phase in the green bodies was characterized for various suspension formulations, carbon fiber contents and forming speeds. Stereological characterization of green body specimens confirmed the effectiveness of HDSC to attain the desired tubular geometry with considerable fiber alignment for a suspension composition containing ≤20 vol.% chopped fibers. 相似文献
13.
Highly concentrated silicon nitride slips with solid-volume concentrations φ of up to 0·475 were prepared from preoxidized, submicron powders in aqueous solutions at pH>8. Viscosity measurements reveal a pseudo-plastic flow behaviour at φ>0·35, which could not be described by existing flow equations. On the basis of the elastic-floc model for highly concentrated suspensions, a modified flow equation was derived, which is only determined by the initial floc-volume ratio and the particle-packing density. The calculated viscosity fits very well with the experimental values from low to high particle-volume concentrations φ from 0·2 to 0·475. 相似文献
14.
The effect of pristine silica nanoparticles on the dynamic and capillary rheology of a model LDPE‐EVA thermoplastic elastomeric system is explored in this paper. The pristine silica nanoparticles were melt‐blended with the LDPE‐EVA system at 1.5, 3, and 5 wt% loadings, respectively, by varying the sequence of addition. In one of the compositions, coupling agent bis‐[3‐(triethoxysilyl)propyl] tetrasulphide (Si‐69) was used to improve the interaction of hydrophilic silica particles with polymer matrix. Results obtained reveal that the viscoelastic behavior of such composites is influenced remarkably by loadings of silica, variation of sequence, and addition of Si‐69. Upon addition of coupling agent, G′ value increases especially at higher strain levels due to increased polymer‐filler interactions. All systems with various loading of nanosilica represent an increase in elastic response with increasing frequency. Both the unfilled and filled blends exhibit rheological behavior of non‐Newtonian fluids. But interestingly, the viscoelastic response varies markedly with the temperature. The dynamic and steady shear rheological properties register a good correlation in regard to the viscous vs. elastic response of such systems. Finally, the rheological behavior is correlated with morphology of the present system processed at various shear rates. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers 相似文献
15.
The effect of controlled electron beam irradiation on the rheological properties of a model LDPE‐EVA thermoplastic elastomer (TPE) system filled with silica nanoparticles is explored in this article. The pristine silica particles were mixed with LDPE‐EVA system in molten condition by varying the sequence of addition and amount of nanosilica. In one composition, Si69 was used to improve the state of dispersion of nanosilica. The rheological behavior of irradiated TPE systems is influenced remarkably by irradiation dose, loadings of silica, variation of sequence, and addition of Si69. All filled TPE systems register an increase in elastic response with increasing frequency and with increase in irradiation dose. Upon irradiation, melt viscosity increases when compared with the unirradiated samples because of the crosslinking effect and improvements in interfacial bonding. The viscoelastic response varies markedly with the temperature. The radiation sensitizing effect of silica is reflected from the rheological data. The dynamic and steady shear rheological properties do not follow a simple correlation. Finally, the rheological behavior is correlated with the morphology of the irradiated systems processed at various shear rates. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
16.
L. Boragno P. Stagnaro S. Losio M. C. Sacchi S. Menichetti C. Viglianisi L. Piergiovanni S. Limbo 《应用聚合物科学杂志》2012,124(5):3912-3920
Several novel random copolymers of ethylene and 1‐olefin counits bearing a highly efficient phenolic antioxidant moiety placed at different distances from the polymerizable double bond were prepared in the presence of a metallocene catalyst. These copolymers were melt‐blended with an antioxidant‐free LDPE in an internal batch mixer to obtain innovative materials containing nonreleasing polymeric antioxidants suitable for safer food packaging applications. Blends and films, obtained by compression molding, were tested for their thermal and thermo‐oxidative stability by thermogravimetric analysis both in dynamic and isothermal conditions. Films containing the macromolecular antioxidants showed a longer induction time before O2 uptake starts and, consequently, a higher degradation temperature than neat LDPE or LDPE containing a low molecular weight commercial additive. Aging tests demonstrated that the new polymeric antioxidants also exert a valid protection against photo‐oxidation. Eventually, migration tests demonstrated the absence of any trace of products containing the antioxidant moiety when the films were kept in contact with a food simulant. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
17.
Wisarn Yenjaichon John R. Grace Choon Jim Lim Chad P.J. Bennington 《American Institute of Chemical Engineers》2013,59(4):1420-1430
Mixing effectiveness was determined experimentally for side jet injection into pipe flow for water and pulp suspensions for a range of fiber mass concentrations (0–3.0%), mainstream velocities (0.5–5.0 m/s), and side‐stream velocities (1.0–12.7 m/s). The mixing quality was measured in cross‐sectional planes along the pipe using electrical resistance tomography and quantified by a modified mixing index, derived from the coefficient of variation of conductivity. Mixing depended strongly on the flow regime and jet penetration. For turbulent flow, the criteria for in‐line jet mixing in water are applicable to the mixing in suspensions, with small differences likely due to differences in fiber network strength and influences of fiber‐turbulence interactions in modifying turbulent structures in the bulk. When a suspension flows as a plug, however, the mixing differs greatly from that in water, depending on the fiber network strength in the core of the pipe. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1420–1430, 2013 相似文献
18.
Surface modification of microcrystalline cellulose (MCC) and its application in LDPE‐based composites 下载免费PDF全文
Microcrystalline cellulose (MCC) was modified by grafting onto its surface ferulic acid, methacryloyl chloride and oleoyl chloride. The efficacy of the chemical modification was confirmed by X‐ray photoelectron spectroscopy. In addition, the size distribution of the cellulosic particles was investigated by optical microscopy and laser granulometry and its hydrophobicity was evaluated using a contact angle method. Finally, to investigate the affinity of modified MCC with a nonpolar polymer and to assess its potential as a biobased reinforcing filler, the modified MCC was compounded into low‐density polyethylene. An organic peroxide, dicumyl peroxide, was added at selected formulations to see if it could further enhance mechanical bonding between the polymer and the particulates. The dispersion was assessed by scanning electron microscopy. Mechanical properties were investigated through tensile testing while the melt rheology of the composites was monitored by small angle oscillatory shear rheology. The acylation modification of the MCC improved the dispersion within LDPE and enhanced the mechanical properties of the composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44348. 相似文献
19.
Manfred Wilhelm 《大分子材料与工程》2002,287(2):83-105
The application of large amplitude oscillatory shear (LAOS) leads, in the non‐linear regime, to a torque response that contains higher mechanical harmonic contributions. These harmonic contributions can be analyzed as spectra in Fourier space with respect to their frequencies, amplitudes and phase angle. In this Feature Article, we present first the experimental technique to measure these Fourier rheology spectra. A main emphasize of this feature article is given to a broad variety of applications of this technique to explore the potential use of this mechanical characterization method. The article is organized in the following way: In the first paragraphs the basic ideas and the motivation regarding the ideas of this work are explained. This is important for this technique since these details are often not treated in already published work. This information should facilitate the spread of the technique itself by describing ways to overcome practical problems that may have hindered similar development elsewhere. After this first section several applications of the FT‐rheology method are described. Due to the fact that our set up achieves an increased sensitivity by a factor 100–1 000 compared to former work, many applications in polymer science are anticipated, e. g. the characterization of polymers with different molecular weights, the different responses of polymer dispersions and the identification of the alignment kinetics in block copolymers under shear, just to give some examples. Moreover, FT‐rheology will provide valuable information regarding the comparison of the experiment and theoretical models, e.g. constitutive equations, analytical or numerical simulations. At the end an outlook is given towards further development of this technique where for example a new extension of the FT‐rheology method into two dimensions is presented. In this experiment a step experiment and oscillatory shear are combined to reach a separation between linear and non‐linear response in materials. The outlook section emphasizes that FT‐rheology opens up a field with a variety of new possibilities for theoreticians, scientists who develop mechanical characterization methods and personnel responsible for quality control or companies that manufacture rheological devices. 相似文献
20.
《Journal of the European Ceramic Society》2007,27(6):2361-2367
The rheological properties of highly filled nano-zirconia suspensions in water and in various water–1,2-propanediol mixtures were investigated. The influence of an electrosteric (polyacrylic acid), an electrostatic (triammonium citrate) and a steric dispersant (2-(2-(2 methoxy ethoxy) ethoxy) acetic acid, TODA) on the viscosity and the elastic properties of the suspensions were also recorded. For any given water–propanediol mixture TODA was the most effective of the investigated dispersants. It resulted in the lowest slurry viscosities and the highest tan δ values, indicating best dispersing properties and the lowest elastic shear modulus, respectively. The water–propanediol proportion influenced the properties of the slurries strongly. For all dispersants the relative viscosity of the slurries decreased with increasing propanediol content. This was found to be a non-linear function in the case of TODA, where at a minimum level of 50 wt.% propanediol the properties of the slurries were the best. For the other dispersants this was a linear function, which indicates that the dispersing quality there only depended on the polarity of the dispersing medium. A screen printing paste was produced using TODA as a dispersant and a 75 wt.% propanediol–25 wt.% water mixture dispersing medium and subsequently printed. The printed layer showed 40–50 nm sized particles, indicating that the dispersing properties were also retained. 相似文献