首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cowpea flour was used to partially replace wheat flour in yeast bread, using automatic household‐type bread machines for mixing, proofing and baking. Loaves containing 15 or 30% extruded cowpea flour weighed more (683.4 g) than loaves from other treatments (641.1–652.6 g). The 100% wheat had the highest loaf volume (2.58 L) and the 30% extruded cowpea the lowest (1.64 L). Cowpea flour breads contained more protein (13.9–15.4%) than the 100% wheat (4.1% fat, 12.5% protein). Bread made with 15% extruded cowpea flour was not different (P < 0.05) from the all‐wheat control in sensory quality and acceptability. Hedonic ratings for the control and 15% extruded cowpea flour ranged from 6.6 (like slightly) to 7.4 (like moderately) for all sensory attributes. The least liked samples contained either 30% raw or 30% extruded cowpea flour, receiving ratings for all attributes ranging from 4.8 (disliked slightly) to 6.2 (liked slightly). Overall, 15% extruded cowpea flour demonstrated successful bread making performance without compromising sensory quality.  相似文献   

2.
The effect of bran type, level of addition, particle size, addition of wheat germ, as well as other additives like improvers and dough conditioners, on the instrumental texture and baking quality of high-fiber toast bread (white pan bread) has been investigated. the specific loaf volume decreased significantly (3.45 cc/g) when the bran level was raised to 30%, but at 20% bran addition, the specific loaf volume was superior to that of the control bread. the specific loaf volume of test breads remained higher than the control bread up to a level of 7.5% wheat germ addition. Additives like ascorbic acid (50 ppm) and sodium stearoyl-2-lactylate (0.5%) further improved the baking quality of test bread samples. the objective texture values (measured as compression force, kg) indicated that the test bread with bran addition up to 20% and germ up to 7.5% possessed a softer texture (0.80 kg) than the control bread (1.02 kg). In comparison with control bread, the panelists gave higher sensory scores for all attributes of test bread samples containing up to 20% red coarse bran or up to 30% red fine bran. A similar trend in sensory quality of test samples containing up to 7.5% wheat germ was also observed. High-fiber toast bread made from white flour, equal proportions of coarse and fine bran at 20%, wheat germ at 7.5%, plus sodium stearoyl-2-lactylate at 0.5% levels, was found to possess softer texture and improved sensory quality than the whole wheat flour bread.  相似文献   

3.
Incorporation of sucrose and raisin juice (in concentrated or in dried form) at 3 and 5% of flour weight to commercial wheat starch (Codex Alimentarius) gluten-free flour was carried out to examine the effects on baking, textural, and sensory properties of bread. Breads made with gluten-free flour are usually characterized by poor color and baking characteristics, as well as short shelf life. The current study was conducted to help solve these problems by using raisin juice, a natural sweetener that contains no preservatives, has lower caloric content than sucrose, and includes a number of important vitamins and minerals that are very important for the coeliac disease patients. The study showed that 3% raisin juice in concentrated form contributes to a great improvement in loaf volume, color, and hardness characteristics of gluten-free bread during the first day after baking but a higher staling rate because of its high moisture content. Dried raisin juice gave bread higher loaf volume and better color compared to the control gluten-free bread and also increased its shelf life because of its moisture absorption properties. Sensory analysis revealed a preference for breads containing concentrated raisin juice because of its fruity flavor, whereas all the samples that contained 5% raisin juice had very dark color.  相似文献   

4.
ABSTRACT: The present study investigates the effect of flour and dough characteristics on the baking performance of hearth loaves, which are proved and baked without a tin. A number of experiments were performed at different scales. The most significant and consistent observation was a positive relationship between the protein quality and the form ratio of the loaves (height/width), in which the protein quality was evaluated by both large and small strain rheology, as well as by size distribution of the gluten proteins and other protein quality parameters. The volume of hearth loaves and the slice area are complex characteristics because they are combined functions of loaf height and loaf width; the loaf height was positively related to protein quality, whereas loaf width was negatively related. The total effect of this is not obvious. In general, the loaf volume is more strongly related to the loaf width than is the slice area. For the present material, differences in protein quality were not manifested as significant differences in loaf volume, whereas the slice area was positively correlated to the protein quality. The results obtained at different scales of the baking experiment agreed well with each other.  相似文献   

5.
ABSTRACT: The effects of protein quality, protein content, ascorbic acid, diacetyl tartaric acid ester of monoglyc-erides (DATEM), and their interactions on dough rheology and hearth bread properties were studied by size-exclusion fast protein liquid chromatography, Kieffer Dough & Gluten Extensibility Rig, and small-scale baking of hearth loaves. The effect of protein content was either positive or negative on hearth loaf characteristics, form ratio, and area, depending on the amount of the largest glutenin polymers in the flour. Ascorbic acid brought out the potential in the wheat flour known as protein quality. Ascorbic acid and DATEM strengthened the doughs and improved hearth bread characteristics.  相似文献   

6.
Green plantain flour (GPF) was used as a functional ingredient to produce gluten‐free (GF) bread based on a flour blend of rice flour and GF wheat starch (50:50) to improve their functional properties and to increase their resistant starch (RS) content. In pretrials, an addition of up to 30% GPF provided acceptable bread quality with maximum RS content. Based on these trials, two 23 factorial screening experimental designs were applied, where water content, baking temperature and baking time of GF bread containing 30% GPF addition were optimised. The best baking conditions to achieve satisfying GF bread quality – higher loaf volume, softer crumb firmness and regular porosity structure at the highest RS content could be defined to a maximum addition of water at 160%, baking temperature of 180 °C and baking time of 90 min. The incorporation of GPF showed good potential to improve the quality of GF bread.  相似文献   

7.
Free amino acids, peptides, and vital wheat gluten were investigated to determine their effect on the mixing and frozen dough baking properties of wheat flour. Addition of 1% cysteine and aspartic acid decreased and glutamic acid, histidine, arginine, and lysine increased the mixing tolerance of flour. Cystine, methionine, tryptophan, and phenylalanine increased but isoleucine, histidine, glycine, arginine, glutamic acid, aspartic acid, and lysine decreased loaf volume of nonfrozen dough breads. However cystine, methionine, tryptophan, and phenylalanine did not increase loaf volume of bread prepared from frozen dough. Vital wheat gluten increased mixing tolerance and bread loaf volume only for the nonfrozen dough. However, wheat gluten hydrolysate, corn, and bonito peptides decreased mixing tolerance after optimum mixing time and were effective in increasing loaf volume for both frozen and nonfrozen dough. As the amount of corn and bonito peptide increased, specific loaf volumes also increased. Addition of 2.5% corn peptide was most effective in increasing loaf volume of frozen dough bread. Crust browning and crumb stickiness increased, whereas crumb softness decreased with addition of peptides. Addition of less than 1% peptide did not adversely affect the aftertaste and off‐flavor of bread. These results suggest that addition of peptides are effective for improving the baking quality of frozen dough, whereas amino acids and gluten have no effect.  相似文献   

8.
Lupin is an economical source of protein, fibre and bioactive compounds, and to obtain these health and nutritional benefits lupin flour has been used in bread production. However, addition of more than 10% lupin flour markedly reduces bread quality mainly due to gluten dilution. The main aim of this research was to retain lupin bread quality enriched with higher percentages of lupin flour (20%) by addition of vital gluten powder (0%, 2%, 3.5% and 5%), investigating the effects of lupin variety (Lupinus albus and L. angustifolius) and two baking systems (rapid and sponge & dough). Impact on bread staling qualities was also determined through texture analysis of samples over a 72-h storage period. Compared to lupin bread with nil gluten addition, significant improvements in loaf volume and crumb texture were observed with addition of gluten powder especially at 5% which increased loaf volume by an average of 20% across lupin sources and baking methods, and crumb softness by 30–50%. Differences were observed between the lupin flour sources. L. angustifolius had a reduced weakening effect when blended with the base flour compared with L. albus. The Sponge & Dough process was found to be more suitable to the inclusion of lupin flour than the rapid process.  相似文献   

9.
Abdel-Kader ZM 《Die Nahrung》2000,44(6):418-421
Physical, rheological and baking properties of decorticated cracked broadbeans-wheat composite flours were studied and the acceptability of the Egyptian 'Balady' bread was evaluated by sensory tests. Decorticated cracked broadbeans flour (DCBF) was used to replace 5%, 10%, 15% and 20% of the wheat flour (WF) in bread. Farinographic studies showed that water absorption, arrival time and dough development time increased as the amount of DCBF increased, while dough stability time increased at 5% and 10% of DCBF substitution and decreased at 15% and 20% substitution. Also, the extensographic energy of the dough decreased as DCBF substitution increased, while the ratio between resistence and extensibility increased. There was a decrease in peak viscosity with increased amounts of DCBF. A reduction of the diameter and weight of bread loaf was observed as the amount of DCBF increased. The sensory properties of 'Balady' bread showed that at the two levels of 5% and 10% DCBF-substitution, the 'Balady' loaves did not show any significant differences (P > 0.05). It is concluded that the replacement of bread flour (WF) with up to 10% decorticated cracked broadbeans flour produced acceptable Egyptian 'Balady' bread.  相似文献   

10.
Defatted soya flour slurries were treated for 0,5,10,15 and 30 min with papain at 50°C and tested for whipability, water absorption and baking quality at replacement levels in wheat flour of 10,20 and 30% (w/w). When whipped, all modified suspensions showed volume increases exceeding 250% with lower stability ratings than the unmodified samples. The 30 min enzyme treated product exhibited excellent water absorption. Use in bread resulted in a depression of loaf volume, development of a granular texture, off-colour and flavour. As was expected, all favourable characteristics decreased upon increasing the percentage of soya product in the dough formulation. Loaf volumes of breads containing 10% modified soya flour (MSF) ranged from 444 to 527 cc; with 20% MSF between 374 and 428 cc, and with 30% MSF between 383 and 409 cc. Loaf volume of all wheat flour bread was 861cc. Hunter colour difference meter readings indicated samples at all replacement levels, regardless of the enzyme modification time, exhibited higher levels of visual lightness than all wheat flour bread. All experimental breads exhibited a higher level of yellow tones and lower level of green tones compared to the all wheat flour bread.  相似文献   

11.
Hypotheses on the role of gluten in bread staling range from gluten having an anti-firming effect, or no effect on firming, to gluten-starch interactions being essential for bread firming. To test these hypotheses, the firming rate of starch bread made from protein-free synthetic flour was compared with that of starch-gluten breads made from synthetic flours containing 1–15% gluten (Fig. 1). Only loaves of similar specific loaf volume and crumb moisture content were compared to eliminate these parameters as variables that might influence firming rate. The starch breads clearly increased in firmness up to six days, indicating that gluten was not essential to the firming process, starch alone causing bread to firm with time. The starch-10% gluten breads and starch-15% gluten breads had very similar specific loaf volumes, moisture contents and firming rates to that of the starch breads. This indicates that protein possibly has some role in firming, because if only starch has a role in firming then adding gluten would effectively dilute the starch and reduce the rate of firming. We propose that increasing bread firmness results from glucan chains of partially leached amylose and amylo-pectin attached to swollen starch granules forming hydrogen bonds with other starch granules and, to a smaller extent, with gluten fibrils.  相似文献   

12.
Bread-making potentials of composite flours containing 90% wheat and 10% acha enriched with 0-15% cowpea flour were investigated. Proximate composition and functional properties of the blends were studied using AOAC standard methods. Bread loaves were prepared from the blends using the straight dough method and evaluated for loaf height, loaf volume, loaf weight and sensory characteristics. Crude protein, crude fat, crude fibre and ash contents increased significantly (p < 0.05) with increase in level of cowpea flour addition, but moisture content was not significantly (p > 0.05) different among the blends. Functional properties, with exception of bulk density and swelling capacity, were significantly (p < 0.05) different among the blends. Average loaf height and loaf volume decreased significantly (p < 0.05) with increased cowpea flour but loaf weight showed opposite trend with significant (p < 0.05) differences as cowpea flour increased. However, the addition of cowpea flour significantly (p < 0.05) decreased the loaf specific volume but all enriched samples were not significantly (p > 0.05) different. Bread samples from composited blends were rated lower than bread from all wheat bread. Bread loaves from enriched composite flour with up to 10% cowpea flour were acceptable to the panelists.  相似文献   

13.
Low carbohydrates bread: Formulation,processing and sensory quality   总被引:1,自引:0,他引:1  
A low carbohydrate bread formula was prepared using hard red spring wheat flour, soy protein and vital gluten. Soy protein was treated with ethanol and jet-cooked to remove the beany taste. Vital gluten and soy protein blends were prepared and added to the control flour in order to reduce the final starch content by 52%. The ratio of soy protein:vital gluten was adjusted, based on the Farinograph profile of the blend relative to the control flour. AACC Method 10-09, Straight dough, was used for the baking. The amounts of shortening and yeast were increased, to improve the dough consistency and to reduce beany taste, respectively. A blend of 70% gluten and 30% soy protein was added to replace 50% of the control flour. This blend gave a loaf value similar to the control. Overall, the loaf was softer, darker in colour and the grain was more open than the control. Another blend, with 50% soy nuggets and 50% vital gluten, was added to replace 50% of the control flour. This produced a loaf with 35% less volume, darker colour, and a grain similar to the control. The protein content of the final product was 56%, which is much higher than that reported in the literature. Bread with high protein content is more suitable for use in low carbohydrate diets than bread formulations currently used.  相似文献   

14.
The effect of partial substitution of wheat flour with reduced‐fat peanut flour at different levels (10, 20, 30, 40, and 50%) on physical parameters, proximate composition, sensory profile, and shelf stability of bread were investigated. Loaf volume, specific volume, and crumb density were significantly (p ≤ .05) reduced with increasing level of substitution with the peanut flour. Peanut flour had significant (p ≤ .05) improvement on the protein content and reduction in carbohydrate content of loaves. Consumers preferred the taste aroma and color of the peanut–wheat flour composite loaves at ≥20% peanut flour inclusion. Freshly baked composite peanut–wheat bread loaves with 10% level of peanut substitution had higher overall acceptability than 100% wheat flour formulation but less microbial stability during storage. Reduced fat‐peanut has potential application for improving the nutritional quality and shelf stability of wheat flour bread.

Practical applications

The demand for convenient alternative to conventional foods is on the increase with the dynamics of the world's social values, lifestyles, and demographic trends. Having peanut incorporated into dough (as one food system) will offer convenience to consumer and therefore add value to bread variety on market shelves. Assessing the influence of the peanut flour on bread quality provides first‐hand information that can facilitate optimization of the baking process toward commercial production of peanut–wheat flour bread.  相似文献   

15.
High-Protein Oat Flour Functionality Assessment in Bread and Sausage   总被引:1,自引:0,他引:1  
The effectiveness of high-protein oat flour, a by-product of an oat starch process, was studied in bread baking and sausage processing. Its impact on sensory properties of products was assessed. High-protein oat flour enhanced water absorption and mixing stability of the dough. Some weakening of dough was found as indicated by a decrease in extensibility and resistance. Addition of oat flour increased loaf volume, enlarged grain size and darkened crumb color. It also caused some off-odors assessed as a decrease in “cleanness” of aroma. Sausages containing high-protein oat flour formed an external gel-like layer under the casing during processing, probably caused by the low pH of the flour. In sensory analyses the sausages were judged less firm and juicy than the control. The “cleanness” of odor and flavor of the sausages was distinctively diminished. Cereal products should be considered the primary products for utilization of high-protein oat flour.  相似文献   

16.
Thermal and non-thermal processing may alter the structure and improve the techno-functional properties of pulses and pulse flours, increasing their range of applications in protein-enhanced foods. The effects of germination and toasting of yellow peas (Pisum sativum) on flour and dough characteristics were investigated. Wheat flour was substituted with raw, germinated and toasted pea flour (30%). The resulting bread-baking properties were assessed. Toasting increased dough water absorption and improved dough stability compared with germinated and raw pea flour (p < 0.05). This resulted in bread loaves with comparable specific volume and loaf density to that of a wheat flour control. Significant correlations between dough rheological properties and loaf characteristics were observed. Addition of pea flours increased the protein content of the breads from 8.4% in the control white bread, to 10.1–10.8% (p < 0.001). Toasting demonstrated the potential to improve the techno-functional properties of pea flour. Results highlight the potential application of pea flour in bread-making to increase the protein content.  相似文献   

17.
Physical, rheological and baking properties of decorticated cracked broadbeans‐wheat composite flours were studied and the acceptability of the Egyptian ‘Balady’ bread was evaluated by sensory tests. Decorticated cracked broadbeans flour (DCBF) was used to replace 5%, 10%, 15% and 20% of the wheat flour (WF) in bread. Farinographic studies showed that water absorption, arrival time and dough development time increased as the amount of DCBF increased, while dough stability time increased at 5% and 10% of DCBF substitution and decreased at 15% and 20% substitution. Also, the extensographic energy of the dough decreased as DCBF substitution increased, while the ratio between resistence and extensibility increased. There was a decrease in peak viscosity with increased amounts of DCBF. A reduction of the diameter and weight of bread loaf was observed as the amount of DCBF increased. The sensory properties of ‘Balady’ bread showed that at the two levels of 5% and 10% DCBF‐substitution, the ‘Balady’ loaves did not show any significant differences (P > 0.05). It is concluded that the replacement of bread flour (WF) with up to 10% decorticated cracked broadbeans flour produced acceptable Egyptian ‘Balady’ bread.  相似文献   

18.
基于淀粉和蛋白质对面包品质至关重要,分析板栗粉、板栗淀粉及板栗蛋白的特性,并探索对面包品质的影响。板栗粉中淀粉(52.87%)、蛋白质(6.58%)均低于高筋小麦粉。与小麦淀粉相比,板栗淀粉更易溶胀、糊化,但热稳定性较差。与小麦蛋白相比,板栗蛋白的α-螺旋含量(10.6%)较低,无规卷曲(34.4%)较高。这些特性正好反映了,随着板栗粉的添加量提高,板栗粉-小麦粉混合粉粉质品质和面包比容均呈下降趋势。当板栗粉添加量为10%时,面包体积最大、气孔细密、评分最佳。  相似文献   

19.
Abstract

Large deformation rheological properties of a bread dough sheet were compared with baking quality of dough from the same sheet. Both rheological test and baking test could differentiate between dough made from a strong and a weak flour. Apparent viscosity at large deformation appeared to be the best predictor of the minimum sheeting requirement to obtain high loaf volume. This is similar to Mechanical Dough Development (MDD) mixing of dough where the mixing curve (apparent viscosity) is used to determine mixing requirement. Baking tests showed that loaf quality (volume and crumb texture) for bread made with sheeting was different from bread made with MDD mixing, particularly when dough was developed beyond the minimum sheeting requirement. These differences indicate that dough development (or over‐development) by sheeting may occur through a different mechanism than by MDD mixing.  相似文献   

20.
BACKGROUND: The use of dietary fibre in bread products is increasing because of consumer demand for healthier products. However, an increase in dietary fibre level changes the rheological properties of the dough and also the quality properties of the final bread product. In this study, effects on dough and bread staling were followed after replacing 3% of wheat flour by fibre‐rich additives (fine durum, oat bran, rye bran and wheat bran). Free‐standing and pan‐baked loaves were baked to compare the influence of baking method and loaf shape. RESULTS: All additives increased dough stability, with oat bran giving the greatest stability and longest development time. Parameters measured during storage were distribution, migration and loss of water, cutability, crumbliness, firmness and springiness. Furthermore, amylopectin retrogradation and amylase‐lipid complex formation were assessed. Oat bran provided similar or better results than the control for all staling parameters, while other additives gave no general improvements. Cutability reached a plateau when crumb firmness was ≥ 4 N. CONCLUSION: Small amounts of fibre‐rich additives had a significant influence on staling. However, the baking method (free‐standing or pan‐baked bread) had a greater impact on staling than the additives, thus displaying the importance of the baking method. Cutability was found to be related to firmness. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号