首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
酪胺分子印迹聚合物的制备及识别特性研究   总被引:1,自引:0,他引:1  
利用分子印迹技术制备用于酪胺快速检测的分子印迹聚合物.以酪胺为模版分子,甲基丙烯酸(MAA)为功能单体,偶氮二异丁腈(AIBN)为引发剂,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,在乙腈中沉淀聚合制备了酪胺分子印迹聚合物微球.通过紫外光谱法对酪胺与MAA的相互作用进行了分析,结果表明在研究的浓度范围内主客体主要存在形式为1个酪胺分子与1个MAA分子发生作用.对聚合物吸附动力学进行了初步研究,通过静态平衡吸附实验研究了聚合物微球对模板分子的结合能力,印迹聚合物微球在8h后逐渐达到吸附平衡.利用Langmuir数学模型对吸附特性进行了分析,Scatchard图显示印迹聚合物的最大吸附量Bmax=325.0μmol/g和解吸常数KD=0.577mmol/L.同时印迹聚合物的吸附选择性较好.此方法合成的印迹聚合物微球对酪胺有较好的结合性能,可应用于酪胺的分离检测.  相似文献   

2.
拟制备阿魏酸分子印迹聚合物微球,考察聚合物的特异吸附性能。以阿魏酸为模板分子,丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,2,2′-偶氮二异丁腈(AIBN)为引发剂,采用沉淀聚合法合成分子印迹微球,采用静态吸附及扫描电镜(SEM)方法对微球进行表征。制得的印迹聚合物微球的形貌和吸附性能较好,对阿魏酸与肉桂酸的选择性分离因子α为1.97。分子印迹聚合物微球对阿魏酸分子有特异性吸附和识别能力。  相似文献   

3.
在光和热引发条件下,以氨基甲酸甲酯为模板分子,CdSe/CdS核壳量子点为荧光组分,采用沉淀聚合法制备了氨基甲酸甲酯荧光分子印迹微球。利用X射线衍射仪、扫描电镜和红外光谱对量子点和聚合物的形貌、结构等进行分析,通过吸附试验考察聚合微球的性能。聚合物球形尺寸均匀,内部存在大量印迹位点,并呈现出较好的特异吸附性和荧光性能。此聚合物有望作为荧光传感器应用于食品、环境等领域中氨基甲酸酯类农药残留的快速检测。  相似文献   

4.
以芦丁为模板分子,以α-甲基丙烯酸(MAA)和丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,利用分子印迹技术在甲醇/水(V/V,1/4)溶剂中合成了芦丁分子印迹聚合物(MIPs),研究了不同功能单体及其用量和不同交联剂用量的聚合体系组成对印迹聚合物吸附特性的影响。对最佳比例制备的MIPs进行了吸附等温实验和Scatchard分析,其结合位点的离解常数Kd分别为105.26mg.L-1和1250mg.L-1,饱和吸附量Qmax分别为18.02mg.g-1和73.50mg.g-1。并利用红外光谱(IR)对分子印迹聚合物进行了表征。  相似文献   

5.
以纳米SiO2为载体,苏丹红IV为模版分子,甲基丙烯酸为功能单体,二甲基丙烯酸乙二醇酯为交联剂,采用表面印迹法制备分子印迹物聚合物。对该聚合物进行了吸附等温线的测定以及Scatchard分析,结果表明分子印迹聚合物对苏丹红IV有两种结合方式,计算得到的最大表观吸附量(Qmax)和平衡离解常数(Kd)分别为:Qmax1=0.8306mg/g,Kd1=4.760mg/L;Qmax2=4.146mg/g,Kd2=112.4mg/L。进行了吸附动力学的测定,结果显示该聚合物对苏丹红IV的吸附符合准二级动力学模型。最后应用该聚合物进行基质固相分散萃取辣椒制品中的苏丹红Ⅰ、Ⅱ、Ⅲ、Ⅳ,最佳实验条件为:聚合物与样品的用量比1∶1,研磨时间8min,洗脱剂为4mL 5%乙酸乙醇溶液。该方法兼备了分子印迹技术的选择性和基质固相分散技术的快速分离性。  相似文献   

6.
以双酚A(BPA)为模版分子,4-VP为功能单体,Trim为交联剂,采用沉淀聚合法合成BPA分子印迹聚合微球(MIPs)。通过紫外和红外光谱考察BPA与4-VP相作用机理,扫描电镜(SEM)观察MIPs的表观形态;结果表明BPA和4-VP之间形成了氢键并且以1:2的比例相结合,MIPs表面光滑呈球状。吸附实验显示MIPs具有较高的特异性,吸附能力远高于非分子印迹聚合物(NIPs)。对吸附曲线进行Scatchard分析,在MIPs上形成了均匀的BPA吸附位点,其最大表观吸附量(Qmax)和平衡离解常数(Kd)分别为28.83μmol/g和0.3112μmol/L。固相萃取(SPE)分析表明MIPs对BPA具有较高选择性和吸附容量,可以用于分离、富集和检测复杂食品样品中的BPA。  相似文献   

7.
4-甲基咪唑印迹聚合物的制备及其识别特性研究   总被引:1,自引:1,他引:0  
利用分子印迹技术,制备用于4.甲基咪唑(4-MI)快速检测的高分子材料。以4-甲基咪唑为模板分子,α-甲基丙烯酸(MAA)为功能单体,偶氮二异丁腈(AIBN)为引发剂,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,在乙腈中通过沉淀聚合制备rr分子印迹聚合物。用紫外分光光度法对4-MI与MAA的相互作用进行了分析,结果表明主客体主要存在形式为,1个4-MI为1个MAA所包围。利用Langmuir数学模型对吸附特性进行了分析,Scatchard图显示印迹聚合物的最大吸附量Bmax=221.14μmol/g和解吸常数KD=1.8mmol/L。同时对印迹聚合物的吸附选择性和吸附动力学进行了初步研究。  相似文献   

8.
以烟酰胺单核苷酸(nicotinamide mononucleotide, NMN)为模板分子,α-甲基丙烯酸为功能单体,N,N′-亚甲基双丙烯酰胺为交联剂,采用沉淀聚合法制备NMN分子印迹微球。对分子印迹微球制备工艺进行优化,当模板分子、功能单体、交联剂的摩尔比为1∶2∶10、乙腈-水(体积比3∶1)用量12 mL、聚合温度60℃时,制备的分子印迹微球吸附效果最好。静态吸附结果表明,所制得的分子印迹微球对NMN有较强的吸附能力;动态吸附结果表明,该分子印迹微球在60 min左右达到吸附平衡、对NMN的吸附过程更符合准二级动力学方程。该分子印迹微球用于固相萃取西兰花提取液中的NMN时,展现了较高的应用性能,对NMN分子印迹微球的制备优化和应用具有参考和指导意义。  相似文献   

9.
以香兰素(Van)为模板、甲基丙烯酸(MAA)为功能单体、偶氮二异丁腈(AIBN)为引发剂和乙烯二醇二甲基丙烯酸酯(EDMA)为交联剂,采用沉淀聚合法合成一种新型的对Van有特异识别功能的分子印迹聚合物微球(MIPs)。通过UV、傅里叶变换红外光谱仪(FT-IR)和1H NMR光谱法研究模板与功能单体之间的相互作用和识别机理,采用扫描电镜(SEM)考察MIPs表面形态,通过平衡和等温吸附实验对MIPs和非分子印迹微球(NIPs)吸附性能进行研究。结果表明:MAA与Van之间通过氢键相互作用,MIPs具有表面光滑的规则球状结构,MIPs对Van的吸附和识别能力远高于NIPs,并且在120min后达到吸附平衡状态,Scatchard分析表明在MIPs上形成了均匀的对Van有特异性的结合位点,最大表观吸附量Qmax和平衡离解常数Kd分别为7.357μmol/g和4.243×10-5mol/L;选择性分离、分子印迹固相萃取(MIP-SPE)和HPLC实验分析表明,MIPs对Van具有很好的分离和富集能力。  相似文献   

10.
采用分子印迹技术,以反式白藜芦醇为模板分子,通过溶胶-凝胶法制备白藜芦醇纳米二氧化硅表面分子印迹聚合物(MIPs-Res),并通过静态吸附平衡实验、扫描电镜、红外光谱研究聚合物的吸附特性、结构及形貌特征。结果表明:与化学组成相同的非印迹聚合物(NIPs)相比,MIPs-Res对白藜芦醇具有较高的选择性和吸附性,该聚合物最佳吸附溶剂为氯仿-乙腈(体积比1:11),吸附温度为室温25℃,吸附平衡常数Kd1为3.42mg/L,最大表观结合量Qmax1为11.20mg/g,3h内达到吸附平衡,将该印迹聚合物用于选择性分离/富集白藜芦醇是可行的。  相似文献   

11.
为了制备特异性强、吸附效果好的分析材料,本实验采用分子印迹技术,以农药氯氰菊酯为模板分子,甲基丙烯酸 (MAA) 为功能单体,乙二醇二甲基丙烯酸酯 (EDMA) 为交联剂,合成了对氯氰菊酯具有高度选择性的分子印迹聚合物(MIP)。通过平衡吸附实验,评价了其对氯氰菊酯的亲和力和选择性。结果表明,与空白MIP相比,氯氰菊酯MIP对其表现出较高的亲和力。Scatchard 分析表明,在MIP中存在对氯氰菊酯有不同亲和力的两类作用位点,其中高亲和力结合位点的离解常数Kd为3.604×10-4mol/L,最大表观吸附量Qmax为53.045μmol/g,低亲和力结合位点的离解常数Kd为1.8015×10-3mol/L,最大表观吸附量为116.61μmol/g。氯氰菊酯MIP上有两个不同性质的结合位点,它对模板分子氯氰菊酯具有一定的选择性和识别能力。  相似文献   

12.
以辛弗林为模板分子,丙烯酸和丙烯酸羟乙酯为双功能单体,偶氮二异丁腈为引发剂,乙二醇二甲基丙烯酸酯为交联剂,通过沉淀聚合法制备辛弗林分子印迹聚合物。静态吸附法筛选最佳合成条件,测定最佳条件下聚合物的最大吸附量、特异识别性能和吸附机理,通过扫描电子显微镜对聚合物进行形态表征,以合成的分子印迹聚合物作为固相萃取填料,对枳实粗粉中的辛弗林进行提取和纯化。实验结果表明在10 mL乙腈作为致孔剂的条件下,当模板分子与功能单体、引发剂、交联剂物质的量比为1∶4∶2∶20时,分子印迹聚合物形貌良好,对辛弗林具有特异识别性且吸附效果最佳,最大吸附量为228.82μmol/g。利用分子印迹固相萃取技术对枳实粗粉中的辛弗林进行精制后,辛弗林质量分数由1.93%提高到93.34%,提取率为73.90%。  相似文献   

13.
采用表面印迹法,以恩诺沙星为模板,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,在聚苯乙烯酶标板表面直接合成恩诺沙星分子印迹聚合物膜。通过傅立叶红外光谱分析、电镜扫描、吸附平衡结合实验、Scatchard方程分析及吸附动力学实验对恩诺沙星印迹聚合物膜进行性能表征。合成的分子印迹聚合物膜具有很好的印迹效果,对恩诺沙星有较高的特异性吸附,且传质速率快,由Scatchard方程分析可知,聚合物膜中含有两类吸附位点,其中高亲和力位点的平衡解离常数(Kd)为19.49μg/mL,饱和吸附容量(Qmax)为12.98μg/mL,低亲和力位点的Kd为277.78μg/mL,Qmax为98.14μg/mL,吸附位点的异质性并不会影响聚合物膜应用于竞争性免疫吸附分析。通过该方法合成的恩诺沙星特异性识别聚合物膜可以作为仿生抗体,应用于竞争性免疫吸附分析检测恩诺沙星在食品中的残留。  相似文献   

14.
合成功能单体N,O-双异丁烯酰乙醇胺(N,O-bismethacryloyl ethanolamine,NOBE),采用表面分子印迹技术,以硅胶为载体,乙二醇二甲基丙烯酸酯(ethylene glycol dimethacrylate,EGDMA)为交联剂,制备乙氧酰胺苯甲酯(ethopabate,ETP)分子印迹聚合物(molecularly imprinted polymers,MIPs)。采用正交试验方法,对ETPNOBE物质的量比、ETP-EGDMA物质的量比和致孔剂种类3 个因素进行考察,结果表明:3 个影响因素主次顺序为致孔剂种类>ETP-NOBE物质的量比>ETP-EGDMA物质的量比;当致孔剂为乙腈、ETP-NOBE-EGDMA的物质的量比为1∶2∶20时,所制备的ETP-MIPs印迹效果最佳。Scatchard模型研究发现存在两类结合位点,高亲和位点与低亲和位点的平衡离解常数Kd和最大表观结合量Qmax分别为Kd1=1.608 μg/mL,Qmax1=1.101 μg/mg;Kd2=0.109 μg/mL,Qmax2=0.172 μg/mg。  相似文献   

15.
目的:建立分子烙印固相萃取-高效液相色谱测定鸡肉中氟喹诺酮类药物残留的新方法。方法:以甲基丙烯酸为功能单体,恩诺沙星为模板分子,在强极性溶剂甲醇-水体系中制备分子烙印聚合物,考察和评价分子烙印聚合物的特性。鸡肉样品经乙腈提取浓缩后过分子烙印固相萃取柱,乙腈-三氟乙酸(99:1,V/V)洗脱液由高效液相色谱分离和荧光法检测。结果:高亲合力的结合位点的解离常数为Kd1=7.19×10-5 mol/L,最大表观结合位点数Qmax,1=110.19μmol/g;低亲和力结合位点的解离常数为Kd2=2.44×10-3mol/L,最大表观结合位点数Qmax,2 = 965.51μmol/g。氧氟沙星、诺氟沙星、环丙沙星和恩诺沙星等氟喹诺酮类药物的校准曲线在1.0~500 μg/kg范围内呈良好的线性关系(r≥0.9991),检出限(S/N=3)为0.06~0.09μg/kg,平均回收率为75.4%~86.4%(n=3),相对标准偏差小于6%。结论:以水兼容性分子烙印固相萃取-高效液相色谱法可实现氟喹诺酮药物的有效分离和灵敏测定。  相似文献   

16.
制备联苯三唑醇分子印迹聚合物(BMIP)并研究其特异识别能力。以联苯三唑醇为模板分子,α-甲基丙烯酸(MAA)为功能单体,采用本体聚合法合成分子印迹聚合物(MIP)。考察不同致孔剂对模板物质与功能单体相互作用力的影响,以及采用不同比例模板分子与功能单体合成的聚合物对联苯三唑醇的吸附量的影响,通过静态吸附实验研究吸附性能,并进行Scatchard分析。结果表明乙腈和四氢呋喃为致孔剂时,联苯三唑醇的最大吸收波长均发生红移,分别红移了5 nm和6 nm,且吸收峰均增强。由Scatchard分析可知,联苯三唑醇与MAA形成了两类结合位点,其解离常数KD1=3.16 mmol/L、KD2=107.53 mmol/L。四氢呋喃和乙腈更适合用于联苯三唑醇分子印迹聚合物的制备。合成的印迹聚合物对模板分子具有很强的亲和力和良好的识别能力,可以用做联苯三唑醇的分离材料。  相似文献   

17.
以灭蝇胺为虚拟模板分子,采用溶胶凝胶技术制备灭蝇胺介孔分子印迹聚合物(MIP)。将MIP作为固相萃取吸附剂,与高效液相色谱联用检测奶粉样品中的三聚氰胺。对该聚合物进行了吸附等温线测定以及Scatchard分析,结果表明分子印迹聚合物对三聚氰胺有两种结合方式。计算得到的最大表观结合量(Qmax)和平衡解离常数(Kd)分别为:Qmax1=14.96 mg/g,Kd1=1.85 mg/L;Qmax2=26.16 mg/g,Kd2=27.03 mg/L。最后应用合成的MIP对2 g奶粉样品提取液中痕量三聚氰胺进行净化和富集,回收率为94.73%~98.56%,相对标准偏差RSD为3.2%,检出限为0.015μg/g。此方法快速、选择性高,为三聚氰胺的残留分析开辟了一条新途径。  相似文献   

18.
以葛根素为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂沉淀聚合法制备葛根素印迹聚合物微球。用扫描电镜观察微球形貌,静态吸附法测试聚合物的吸附行为。探讨分子印迹聚合物(molecularly imprinted polymers,MIPs)对葛根粗提液中葛根素的吸附、解吸附及固相萃取效能。结果表明,优化的葛根素MIP3对纯模板的静态吸附量达37.9 mg/g;对粗提液中目标化合物的吸附率为(96.3±1.81)%,以水、甲醇-醋酸(9∶1,V/V)及50%甲醇溶液为洗脱剂的单次解吸率为27%~34%,用水从MIP3上解吸出的总溶液经脱除溶剂后,所获粗品葛根素含量最高,达(37.4±2.87)%。在优化条件下,通过MIP3固相萃取葛根粗提液,葛根素回收率达71.6%,产品纯度高于75%。  相似文献   

19.
以酪胺为模板分子,丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EDGMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,在制孔剂甲醇中,采用本体聚合法制备酪胺分子印迹聚合物。对预组装体系的紫外光谱分析表明:1个酪胺主要与1个AM分子形成TYR—AM型复合物。通过静态平衡吸附试验和选择性试验研究印迹聚合物的吸附性能和选择性,并采用Scatchard模型研究印迹聚合物的结合特性。结果表明,印迹聚合物的最大表观吸附量Qmax=248.33μmol/g,平衡解离常数KD=1.76μmol/mL。  相似文献   

20.
以莠去津为模板分子,甲基丙烯酸(methacrylic acid,MAA)为功能单体,乙腈为致孔剂,采用沉淀聚合法制备莠去津分子印迹聚合物微球(molecularly imprinted polymer microspheres,MIPMs)。对MIPMs制备工艺进行优化,当莠去津与MAA物质的量比1∶4、乙腈用量50 mL、聚合温度60 ℃时,MIPMs的吸附效果最好。通过吸附实验考察MIPMs对目标物的吸附性能,并结合Scatchard分析可知MIPMs对莠去津存在两类吸附位点,且最大表观结合量为282.69 μmol/g。以MIPMs作为固相萃取材料,制备分子印迹固相萃取(molecularly imprinted solid phase extraction,MISPE)柱,用于样品前处理,并建立莠去津-MISPE-高效液相色谱法测定食品中4 种三嗪类农药(西玛津、莠灭净、莠去津、扑草净)残留的方法。结果表明,MISPE柱对4 种三嗪类农药具有特异选择性,4 种农药的线性相关系数为0.999 1~0.999 7,检出限为0.5~5 ng/mL,平均回收率在86.2%~95.7%之间,相对标准偏差为1.98%~4.51%(n=5)。该方法能够简单、准确、高选择性地检测食品中三嗪类农药残留。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号