首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the production of bio-SNG (substitute natural gas) from syngas of biomass steam gasification, trace amounts of sulfur and tar compounds in raw syngas must be removed. In present work, biomass gasification and in-bed raw gas upgrading have been performed in a decoupled dual loop gasifier (DDLG), with aggregation-resistant nickel supported on calcined olivine (Ni/olivine) as the upgrading catalyst for simultaneous desulfurization and tar elimination of biogenous syngas. The effects of catalyst preparation, upgrading temperature and steam content of raw syngas on sulfur removal were investigated and the catalytic tar reforming at different temperatures was evaluated as well. It was found that 850 °C calcined Ni/olivine was efficient for both inorganic-sulfur (H2S) and organic-sulfur (thiophene) removal at 600–680 °C and the excellent desulfurization performance was maintained with wide range H2O content (27.0–40.7%). Meanwhile, tar was mostly eliminated and H2 content increased much in the same temperature range. The favorable results indicate that biomass gasification in DDLG with Ni/olivine as the upgrading bed material could be a promising approach to produce qualified biogenous syngas for bio-SNG production and other syngas-derived applications in electric power, heat or fuels.  相似文献   

2.
This paper investigates the hydrogen-rich gas produced from biomass employing an updraft gasifier with a continuous biomass feeder. A porous ceramic reformer was combined with the gasifier for producer gas reforming. The effects of gasifier temperature, equivalence ratio (ER), steam to biomass ratio (S/B), and porous ceramic reforming on the gas characteristic parameters (composition, density, yield, low heating value, and residence time, etc.) were investigated. The results show that hydrogen-rich syngas with a high calorific value was produced, in the range of 8.10–13.40 MJ/Nm3, and the hydrogen yield was in the range of 45.05–135.40 g H2/kg biomass. A higher temperature favors the hydrogen production. With the increasing gasifier temperature varying from 800 to 950 °C, the hydrogen yield increased from 74.84 to 135.4 g H2/kg biomass. The low heating values first increased and then decreased with the increased ER from 0 to 0.3. A steam/biomass ratio of 2.05 was found as the optimum in the all steam gasification runs. The effect of porous ceramic reforming showed the water-soluble tar produced in the porous ceramic reforming, the conversion ratio of total organic carbon (TOC) contents is between 22.61% and 50.23%, and the hydrogen concentration obviously higher than that without porous ceramic reforming.  相似文献   

3.
Tar is a common by-product during the gasification of biomass and its presence largely limits the subsequent application of syngas generated. Although biomass tar could be converted into hydrogen-rich syngas by catalytic steam reforming, the frequently adopted high-activity and low-cost Ni catalysts suffer from the problem of easy deactivation as a result of carbon deposition, and more efficient and stable catalyst needs to be developed for tar removal in biomass gasification. In the work, various Ni/pyrochlore catalysts characterized with redox properties were constructed and further modified through partial replacement of A-site in support, and their reaction characteristics in toluene steam reforming were comprehensively investigated. Results show that catalysts of Ni/La2Ce2 and Ni/Y2Ce2 have good catalytic performance due to the strong interaction between Ni and pyrochlore. Although a small amount doping of Sr in A-site is observed to decrease Ni/pyrochlore interaction, the great promotion in surface oxygen mobility make Ni/La1.8Sr0.2Ce2 possess the best reactivity among all catalysts studied, and the optimum operating conditions is determined to be 650 °C and S/C = 2. Moreover, Ni/La1.8Sr0.2Ce2 is found to be very stable during toluene steam reforming, which is proved to be a result of the superior capability in resisting coke formation.  相似文献   

4.
The catalytic steam gasification of pig compost (PC) for hydrogen-rich gas production was conducted in a fixed-bed reactor. The influence of the catalyst and reactor temperature on yield and product composition was studied at the temperature range of 700–850 °C, for weight hourly space velocity (WHSV) in the range of 0.30–0.60 h−1. The results indicate that the developed NiO on modified dolomite (NiO/MD) catalyst reveals better catalytic performance on the tar elimination and hydrogen yield than calcined MD or NiO/γ-Al2O3 catalyst. Meanwhile, the lower WHSV and higher reactor temperature can contribute to more hydrogen production and gas yield. Moreover, the char from catalytic steam gasification of PC has a highest ash content of 75.84% at 850 °C. In conclusion, pig compost is a potential candidate for hydrogen gas production through catalytic steam gasification technology.  相似文献   

5.
The catalytic steam gasification of waste polyethylene (PE) from municipal solid waste (MSW) to produce syngas (H2 + CO) with NiO/γ-Al2O3 as catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the reactor temperature on the gas yield, gas composition, steam decomposition, low heating value (LHV), cold gas efficiency and carbon conversion efficiency was investigated at the temperature range of 700–900 °C, with a steam to waste polyethylene ratio of 1.33. Over the ranges of experimental conditions examined, NiO/γ-Al2O3 catalyst revealed better catalytic performance as a view of increasing product gas yield and of decreasing char and liquid yields in the presence of steam. Higher temperature resulted in more H2 and CO production, higher carbon conversion efficiency and product gas yield. The highest syngas (H2 + CO) content of 64.35 mol%, the highest H2 content of 36.98 mol%, and the highest CO content of 27.37 mol%, were achieved at the highest temperature level of 900 °C. Syngas produced with a H2/CO molar ratio in the range of 0.83–1.35, was highly desirable as feedstock for Fischer–Tropsch synthesis for the production of transportation fuels.  相似文献   

6.
The combination of biomass gasification with solid oxide fuel cells (SOFCs) is gaining increasing interest as an efficient and environmentally benign method of producing electricity and heat. However, tars in the gas stream arising from the gasification of biomass material can deposit carbon on the SOFC anode, having detrimental effects to the life cycle and operational characteristics of the fuel cell. This work examines the impact of biomass gasification syngas components combined with benzene as a model tar, on carbon formation on Ni/CGO (gadolinium-doped ceria) SOFC anodes. Thermodynamic calculations suggest that SOFCs operating at temperatures > 750 °C are not susceptible to carbon deposition from a typical biomass gasification syngas containing 15 g m−3 benzene.However, intermediate temperature SOFCs operating at temperatures < 650 °C require threshold current densities well above what is technologically achievable to inhibit the effects of carbon deposition. SOFC anodes have been shown to withstand tar levels of 2-15 g m−3 benzene at 765 °C for 3 h at a current density of 300 mA cm−2, with negligible impact on the electrochemical performance of the anode. Furthermore, no carbon could be detected on the anode at this current density when benzene levels were <5 g m−3.  相似文献   

7.
Mesoporous alumina xerogel (AX) supports prepared by a sol–gel method were calcined at various temperatures. Ni/mesoporous alumina xerogel (Ni/AX) catalysts were then prepared by an impregnation method, and were applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of calcination temperature of AX supports on the catalytic performance of Ni/AX catalysts in the steam reforming of LNG was investigated. Physical and chemical properties of AX supports and Ni/AX catalysts were strongly influenced by the calcination temperature of AX supports. Crystalline structure of AX supports was transformed in the sequence of γ-alumina → (γ + θ)-alumina → θ-alumina → (θ + α)-alumina with increasing calcination temperature from 700 to 1000 °C. Nickel species were strongly bonded to the divalent vacancy of γ-alumina, (γ + θ)-alumina, and θ-alumina through the formation of nickel aluminate phase. In the steam reforming of LNG, both LNG conversion and hydrogen composition in dry gas showed volcano-shaped curves with respect to calcination temperature of AX supports. Among the catalysts tested, Ni/AX-900 (nickel catalyst supported on AX that had been calcined at 900 °C) showed the best catalytic performance. The smallest nickel crystalline size and the strongest nickel–alumina interaction were responsible for high catalytic performance of Ni/AX-900 catalyst in the steam reforming of LNG.  相似文献   

8.
The catalytic steam gasification of biomass was carried out in a lab-scale fixed bed reactor in order to evaluate the effects of particle size at different bed temperatures on the gasification performance. The bed temperature was varied from 600 to 900 °C and the biomass was separated into five different size fractions (below 0.075 mm, 0.075–0.15 mm, 0.15–0.3 mm, 0.3–0.6 mm and 0.6–1.2 mm). The results show that with decreasing particle size, the dry gas yield, carbon conversion efficiency and H2 yield increased, and the content of char and tar decreased. And the differences due to particle sizes in gasification performance practically disappear as the higher temperature bound is approached. Hydrogen and carbon monoxide contents in the produced gas increase with decreasing particle size at 900 °C, reaching to 51.2% and 22.4%, respectively.  相似文献   

9.
Biomass tar is one of the most troublesome issues limiting the further development of biomass pyrolysis and gasification. In this study, a plasma enhanced catalytic steam reforming technology was applied for biomass tar removal. Toluene was selected as biomass tar surrogate. The nano-sized alumina-supported nickel and iron catalysts with different molar ratios of M/Al (M: Ni or Fe, 0:1, 1:3, 1:1, 3:1, 1:0) were prepared for catalytic steam reforming of toluene in a non-thermal plasma reactor featuring dielectric barrier discharge (DBD). The results showed that syngas was the dominant gas product of toluene decomposition. The conversion efficiency of toluene and energy efficiency using Ni-Al and Fe-Al catalysts both followed a sequence: M1Al3 > M1Al1 > M3Al1, which is in line with the BET surface area and pore volume. However, the selectivity of H2 and CO catalysed by Ni-Al and Fe-Al catalysts follows the order of M1Al3 < M1Al1 < M3Al1. Presumably, toluene dissociation is a process composed of adsorption-reaction-desorption. The formation of syngas is supposed to proceed as a series of ionic and free radical reactions occurring preferably in the gas phase. Ni1Al3 catalyst shows the largest potential in converting biomass tar into H2-rich syngas, with a maximum toluene conversion of 96% and a largest H2 yield of 2.18 mol/mol-toluene. Besides, the results showed that this hybrid plasma-catalysis system was potential in anti-carbon deposition.  相似文献   

10.
The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm−2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.  相似文献   

11.
In the present study the catalytic steam gasification of MSW to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the catalyst and reactor temperature on yield and product composition was studied at the temperature range of 750–950 °C, with a steam to MSW ratio of 0.77, for weight hourly space velocity of 1.29 h−1. Over the ranges of experimental conditions examined, calcined dolomite revealed better catalytic performance, at the presence of steam, tar was completely decomposed as temperature increases from 850 to 950 °C. Higher temperature resulted in more H2 and CO production, higher carbon conversion efficiency and dry gas yield. The highest H2 content of 53.29 mol%, and the highest H2 yield of 38.60 mol H2/kg MSW were observed at the highest temperature level of 950 °C, while, the maximum H2 yield potential reached 70.14 mol H2/kg dry MSW at 900 °C. Syngas produced by catalytic steam gasification of MSW varied in the range of 36.35–70.21 mol%. The char had a highest ash content of 84.01% at 950 °C, and negligible hydrogen, nitrogen and sulphur contents.  相似文献   

12.
Main characteristics of gaseous yield from steam gasification have been investigated experimentally. Results of steam gasification have been compared to that of pyrolysis. The temperature range investigated were 600–1000 °C in steps of 100 °C. Results have been obtained under pyrolysis conditions at same temperatures. For steam gasification runs, steam flow rate was kept constant at 8.0 g/min. Investigated characteristics were evolution of syngas flow rate with time, hydrogen flow rate and chemical composition of syngas, energy yield and apparent thermal efficiency. Residuals from both processes were quantified and compared as well. Material destruction, hydrogen yield and energy yield is better with gasification as compared to pyrolysis. This advantage of the gasification process is attributed mainly to char gasification process. Char gasification is found to be more sensitive to the reactor temperature than pyrolysis. Pyrolysis can start at low temperatures of 400 °C; however char gasification starts at 700 °C. A partial overlap between gasification and pyrolysis exists and is presented here. This partial overlap increases with increase in temperature. As an example, at reactor temperature 800 °C this overlap represents around 27% of the char gasification process and almost 95% at reactor temperature 1000 °C.  相似文献   

13.
This paper investigates the effect of modifying an Ni catalyst on the prevention of sintering of the catalyst at high temperatures, without causing a reduction in catalytic activity. The Ni catalyst was modified by adding Al through a solid–gas–solid reaction at a low temperature to produce an Ni–Al solid solution. This process allows for low-cost production of the modified catalyst. An activity test of the catalysts was carried out at 650 °C and 1 atm to simulate direct internal reforming of a molten carbonate fuel cell (MCFC). Experimental results showed consistent activity of the Al-modified catalyst, even after aging under severe conditions (900 °C) to simulate accelerated sintering. TEM data did not show any significant physical changes even after aging. Addition of Al appeared to have successfully prevented Ni from sintering without reducing its catalytic activity in reforming bio-ethanol. In addition, an Ni–Al/MgO catalyst, integrated into the anode of an MCFC, was successfully tested for over 2000 h without any significant performance degradation.  相似文献   

14.
The stability of Mn-promoted Ni/SiO2 catalyst for methane CO2 reforming was investigated comparatively to that of Zr-promoted Ni/SiO2. The catalysts were prepared by the same impregnation method with the same controlled promoter contents and characterized by TPR, XRD, TG, SEM, XPS and Raman techniques. The addition of Mn to Ni/SiO2 catalyst promoted the dispersion of Ni species, leading to smaller particle size of NiO on the fresh Ni–Mn/SiO2 catalyst and the formation of NiMn2O4, which enhanced the interaction of the modified support with Ni species. Thus, the Ni–Mn/SiO2 catalyst showed higher activity and better ability of restraining carbon deposition than Ni/SiO2 catalyst. Besides, it exhibited stable activity at reaction temperatures over the range from 600 °C to 800 °C. However, the introduction of Zr increased the reducibility of Ni–Zr/SiO2, and the catalyst deactivated much more dramatically when the reaction temperature decreased due to its poor ability of restraining carbon deposition, and its activity decreased monotonically with time on stream at 800 °C.  相似文献   

15.
Catalytic gasification (CG) of sewage sludge-derived volatiles (SSDVs) was investigated over a prepared nickel loaded on Loy Yong lignite char (Ni/LYLC) in a two-stage fixed-bed reactor to understand the effects of the catalyst, temperature, and steam on the gas yields and nitrogen transformations. Non-catalytic thermal decomposition of SSDVs below 650 °C is not effective for decomposing the tar and converting the volatile nitrogen species (VNSs) to N2. Ni/LYLC proved to be quite active not only for tar reduction, but also for the conversion of VNSs to N2 at 650 °C. CG of SSDVs over Ni/LYLC produced significant amount of clean H2-rich syngas. CG above 650 °C results in the increase of nickel crystallite size and the deactivation of Ni/LYLC for tar decomposition. The study revealed the possibility of using Ni/LYLC as a potential catalyst for low-temperature CG of sewage sludge to produce clean H2-rich syngas.  相似文献   

16.
Steel slag (SS) contains high amounts of metal oxides and could be applied as the catalyst or support material for the reforming of biomass derived tar. In this research, steel slag supported nickel catalysts were prepared by impregnation of a small amount of nickel (0–10 wt%) and calcination at 900 °C, and then tested for the catalytic reforming of biomass primary tar from pine sawdust pyrolysis. The steel slag after calcination was mainly composed of Fe2O3 and MgFe2O4, and granular NiO particles was formed and highly dispersed on the surface of nickel loaded steel slag which lead to a porous structure of the catalysts. The steel slag showed good activity on converting biomass primary tar into syngas, and its performance can be further enhanced by the loading of nickel. The yield of H2 increased significantly with the increase of nickel loading amount, while excessive nickel loading resulted in the decrease in CO and CH4 yields and significant increase in CO2 yield. The presence of steam contributed to enhancing the tar steam reforming as well as reactions between steam and produced gases, while decrease the contact probability between the reactants and the active sites of catalysts, leading to a little decrease in tar conversion efficiency but significant increase in syngas yield. The iron and nickel oxides were reduced by the syngas (CO and H2) from the biomass pyrolysis, and stable and porous structure was formed on the surface of the nickel loaded catalysts during tar reforming.  相似文献   

17.
This paper investigates the hot gas temperature effect on enhancing hydrogen generation and minimizing tar yield using zeolite and prepared Ni-based catalysts in rice straw gasification. Results obtained from this work have shown that increasing hot gas temperature and applying catalysts can enhance energy yield efficiency. When zeolite catalyst and hot gas temperature were adjusted from 250 °C to 400 °C, H2 and CO increased slightly from 7.31% to 14.57%–8.03% and 17.34%, respectively. The tar removal efficiency varies in the 70%–90% range. When the zeolite was replaced with prepared Ni-based catalysts and hot gas cleaning (HGC) operated at 250 °C, H2 contents were significantly increased from 6.63% to 12.24% resulting in decreasing the hydrocarbon (tar), and methane content. This implied that NiO could promote the water-gas shift reaction and CH4 reforming reaction. Under other conditions in which the hot gas temperature was 400 °C, deactivated effects on prepared Ni-based catalyst were observed for inhibiting syngas and tar reduction in the HGC system. The prepared Ni-based catalyst worked at 250 °C demonstrate higher stability, catalyst activity, and less coke decomposition in dry reforming. In summary, the optimum catalytic performance in syngas production and tar elimination was achieved when the catalytic temperature was 250 °C in the presence of prepared Ni-based catalysts, producing 5.92 MJ/kg of lower heating value (LHV) and 73.9% tar removal efficiency.  相似文献   

18.
Ni/red mud (RM) catalysts were prepared by wet impregnation and used in the catalytic steam gasification of bamboo sawdust (BS) to produce hydrogen-rich syngas. The system was optimized in terms of the amount of added nickel (10%), reaction temperature (800 °C), and catalyst placement (separately behind the BS). The maximum H2 yield was 17.3% higher than that using pure RM catalyst and 43.8% higher than that of BS gasification alone, and the H2/CO ratio in the syngas reached 7.82. This Ni/RM catalyst also retained good activity after six cycles in a double-stage fixed bed reactor. Analysis using X-ray fluorescence, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, and other methods revealed that the interaction of Ni, Fe, and Mg in Ni/RM produced bimetallic compounds containing active sites, such as NiFe2O4, MgNiO2, and NiO. This explains the good catalytic performance in the tar conversion during the gasification process.  相似文献   

19.
To produce the high quality H2-rich syngas from biomass and plastic wastes, a two-stage pyrolysis-gasification system involving pyrolysis and catalytic gasification is considered as a suitable route. Generally, synthesis of highly active, low cost and coke-resistant catalyst for tar cracking is the key factor. A series of monometallic catalysts of Ni@CNF/PCs and Fe@CNF/PCs and the bimetallic Ni–Fe@CNF/PCs catalyst were prepared by a simple one-step pyrolysis approach for high quality syngas production from pyrolysis-gasification of biomass and plastic wastes. The results indicated that the bimetallic Ni–Fe@CNF/PCs catalyst appeared as the optimal catalyst in affording the best compromise between catalytic activity and stability with the existence of the excellent dispersibility of the Fe0.64Ni0.36 alloy nanoparticles and the carbon nanofibers/porous carbon composite structure. In addition, the optimal operation conditions of biomass/plastic ratio of 1/2 and gasification temperature of 700 °C were observed for the bimetallic Ni–Fe@CNF/PCs catalyst to play best roles in the H2-rich syngas quality, with up to 33.66 mmol H2/g biomass, and tar yields as low as 5.66 mg/g.  相似文献   

20.
Tars should be removed from biomass gasification systems so as not to damage or clog downstream pipes or equipment. In this paper, lignite insoluble residue (LIR) after extraction of humic acids was used as the support to prepare a nickel-loaded LIR (Ni/LIR) catalyst. This novel catalyst Ni/LIR was tested in steam reforming of toluene as a model compound of biomass tar conducted in a laboratory-scale fixed bed reactor. When compared to the reactions without catalyst or with Ni/Al2O3, Ni/LIR was confirmed as an active catalyst for toluene conversion at a relatively low temperature of 900 K. The investigated reforming parameters during the experiments in this research were selected as reaction temperature at a range of 850–950 K, steam/carbon molar ratio at a range of 2–5 mol/mol, and a space velocity from 1696 to 3387 h?1. It was concluded that, under optimum conditions, significant amount of syngas yields, acceptable Ni/LIR consumption and more than 95% of toluene conversion can be obtained from the biomass Ni/LIR catalytic gasification system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号