首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Main characteristics of gaseous yield from steam gasification have been investigated experimentally. Results of steam gasification have been compared to that of pyrolysis. The temperature range investigated were 600–1000 °C in steps of 100 °C. Results have been obtained under pyrolysis conditions at same temperatures. For steam gasification runs, steam flow rate was kept constant at 8.0 g/min. Investigated characteristics were evolution of syngas flow rate with time, hydrogen flow rate and chemical composition of syngas, energy yield and apparent thermal efficiency. Residuals from both processes were quantified and compared as well. Material destruction, hydrogen yield and energy yield is better with gasification as compared to pyrolysis. This advantage of the gasification process is attributed mainly to char gasification process. Char gasification is found to be more sensitive to the reactor temperature than pyrolysis. Pyrolysis can start at low temperatures of 400 °C; however char gasification starts at 700 °C. A partial overlap between gasification and pyrolysis exists and is presented here. This partial overlap increases with increase in temperature. As an example, at reactor temperature 800 °C this overlap represents around 27% of the char gasification process and almost 95% at reactor temperature 1000 °C.  相似文献   

2.
High temperature steam gasification of wastewater sludge   总被引:2,自引:0,他引:2  
High temperature steam gasification is one of the most promising, viable, effective and efficient technology for clean conversion of wastes to energy with minimal or negligible environmental impact. Gasification can add value by transforming the waste to low or medium heating value fuel which can be used as a source of clean energy or co-fired with other fuels in current power systems. Wastewater sludge is a good source of sustainable fuel after fuel reforming with steam gasification. The use of steam is shown to provide value added characteristics to the sewage sludge with increased hydrogen content as well total energy. Results obtained on the syngas properties from sewage sludge are presented here at various steam to carbon ratios at a reactor temperature of 1173 K. Effect of steam to carbon ratio on syngas properties are evaluated with specific focus on the amounts of syngas yield, syngas composition, hydrogen yield, energy yield, and apparent thermal efficiency. The apparent thermal efficiency is similar to cold gas efficiency used in industry and was determined from the ratio of energy in syngas to energy in the solid sewage sludge feedstock. A laboratory scale semi-batch type gasifier was used to determine the evolutionary behavior of the syngas properties using calibrated experiments and diagnostic facilities. Results showed an optimum steam to carbon ratio of 5.62 for the range of conditions examined here for syngas yield, hydrogen yield, energy yield and energy ratio of syngas to sewage sludge fuel. The results show that steam gasification provided 25% increase in energy yield as compared to pyrolysis at the same temperature.  相似文献   

3.
The characteristics of syngas evolution during pyrolysis and gasification of waste rubber have been investigated. A semi-batch reactor was used for the thermal decomposition of the material under various conditions of pyrolysis and high temperature steam gasification. The results are reported at two different reactor temperatures of 800 and 900 °C and at constant steam gasifying agent flow rate of 7.0 g/min and a fixed sample mass. The characteristics of syngas were evaluated in terms of syngas flow rate, hydrogen flow rate, syngas yield, hydrogen yield and energy yield. Gasification resulted in 500% increase in hydrogen yield as compared to pyrolysis at 800 °C. However, at 900 °C the increase in hydrogen was more than 700% as compared to pyrolysis. For pyrolysis conditions, increase in reactor temperature from 800 to 900 °C resulted in 64% increase in hydrogen yield while for gasification conditions a 124% increase in hydrogen yield was obtained. Results of syngas yield, hydrogen yield and energy yield from the rubber sample are evaluated with that obtained from woody biomass samples, namely hard wood and wood chips. Rubber gasification yielded more energy at the 900 °C as compared to biomass feedstock samples. However, less syngas and less hydrogen were obtained from rubber than the biomass samples at both the temperatures reported here.  相似文献   

4.
Large amount of food waste is generated from Indian kitchens and disposing off such a large amount possesses a great challenge in terms of environmental degradation and viable food waste processing technology. In this work, steam gasification was tested as an alternative viable technology to process the kitchen food waste. Preliminary study was carried out at low temperature on steam gasification in a fixed bed reactor to study the influence of steam flow rate (SFR) and temperature on the syngas yield, syngas composition, hydrogen yield. Performance parameters such as carbon conversion efficiency (CCE), and apparent thermal efficiency (ATE) are also calculated. Steam flow rates are varied from 0.125 mL/min to 0.75 mL/min and the temperatures are varied from 700 °C to 800 °C. The highest hydrogen yield is obtained at 0.5 mL/min SFR and 800 °C temperature and its highest value is 1.2 m3/kg. The highest value of performance parameters, CCE and ATE are found to be 63% and 1.8.  相似文献   

5.
The air–steam catalytic gasification of rice husk for hydrogen-rich gas production was experimentally investigated in a combined fixed bed reactor with the newly developed nano-NiO/γ-Al2O3 catalyst. A series of experiments have been performed to explore the effects of catalyst presence, catalytic reactor temperature, the equivalence ratio (ER), and steam to biomass ratio (S/B) on the composition and yield of gasification gases. The experiments demonstrated that the developed nano-NiO/γ-Al2O3 catalyst had a high activity of cracking tar and hydrocarbons, upgrading the gas quality, as well as yielding a high hydrogen production. Catalytic temperature was crucial for the overall gasification process, a higher temperature contributed to more hydrogen production and gas yield. Varying ER demonstrated complex effects on rice husk gasification and an optimal value of 0.22 was found in the present study. Compared with biomass catalytic gasification under air only, the introduction of steam improved the gas quality and yield. The steam/biomass ratio of 1.33 was found as the optimum operating condition in the air–steam catalytic gasification.  相似文献   

6.
Wastes produced during oil palm production from agro-industries have great potential as a source of renewable energy in agriculturally rich countries, such as Thailand and Malaysia. Clean chemical energy recovery from oil palm residual branches via steam gasification is investigated here. A semi-batch reactor was used to investigate the gasification of palm trunk wastes at different reactor temperatures in the range of 600 to 1000 °C. The steam flow rate was fixed at 3.10 g/min. Characteristics and overall yield of syngas properties are presented and discussed. Results show that gasification temperature slightly affects the overall syngas yield. However, the chemical composition of the syngas varied tremendously with the reactor temperature. Consequently, the syngas heating value and ratio of energy yield to energy consumed were found to be strongly dependent on the reactor temperature. Both the heating value and energy yield ratio increased with increase in reactor temperature. Gasification duration and the steam to solid fuel ratio indicate that reaction rate becomes progressively slower at reactor temperatures of less than 700 °C. The results reveal that steam gasification of oil palm residues should not be carried out at reactor temperatures lower than 700 °C, since a large amount of steam is consumed per unit mass of the sample in order to gasify the residual char.  相似文献   

7.
Hydrogen and syngas production from sewage sludge via steam gasification   总被引:1,自引:0,他引:1  
High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 °C was found to be 0.076 ggas gsample−1. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes.  相似文献   

8.
The paper focuses on the use of oxygen and steam as the gasification agents in the thermochemical conversion of biomass to produce hydrogen rich syngas, using a downdraft reactor configuration. Performance of the reactor is evaluated for different equivalence ratios (ER), steam to biomass ratios (SBR) and moisture content in the fuel. The results are compared and evaluated with chemical equilibrium analysis and reaction kinetics along with the results available in the literature. Parametric study suggests that, with increase in SBR, hydrogen fraction in the syngas increases but necessitates an increase in the ER to maintain reactor temperature toward stable operating conditions. SBR is varied from 0.75 to 2.7 and ER from 0.18 to 0.3. The peak hydrogen yield is found to be 104 g/kg of biomass at SBR of 2.7. Further, significant enhancement in H2 yield and H2 to CO ratio is observed at higher SBR (SBR = 1.5–2.7) compared with lower range SBR (SBR = 0.75–1.5). Experiments were conducted using wet wood chips to induce moisture into the reacting system and compare the performance with dry wood with steam. The results clearly indicate the both hydrogen generation and the gasification efficiency (ηg) are better in the latter case. With the increase in SBR, gasification efficiency (ηg) and lower heating value (LHV) tend to reduce. Gasification efficiency of 85.8% is reported with LHV of 8.9 MJ Nm?3 at SBR of 0.75 compared with 69.5% efficiency at SBR of 2.5 and lower LHV of 7.4 at MJ Nm?3 at SBR of 2.7. These are argued on the basis of the energy required for steam generation and the extent of steam consumption during the reaction, which translates subsequently in the LHV of syngas. From the analysis of the results, it is evident that reaction kinetics plays a crucial role in the conversion process. The study also presents the importance of reaction kinetics, which controls the overall performance related to efficiency, H2 yield, H2 to CO fraction and LHV of syngas, and their dependence on the process parameters SBR and ER. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Water thermal plasma gasification is a promising gasification technology aiming at providing sustainable disposal for various wastes. In this study, thermochemical modeling and optimization of a water thermal plasma reactor is carried out in order to enhance H2 and CO production from propane gasification. The novelty of present study is that the plasma reactor is considered as two connected partially stirred reactors for steam dissociation and propane gasification. Various detailed chemical mechanisms are evaluated against previously published experimental data and thermodynamic results. Influences of important parameters on syngas production, such as argon temperature and flow rate as well as steam and propane flow rates have been studied. It is found that the temperature and flow rate of argon have major impacts on hydrogen production due to changing the concentration of H radicals in the steam dissociation part. In particular, reducing argon temperature by 30% can result in 14% increase in H2 mole fraction. Also, 20% reduction in argon flow rate would increase H2 concentration by 9.5%. The present modeling approach will be useful in further investigations to improve the construction of a plasma reactor and defining best operational conditions for syngas production.  相似文献   

10.
The catalytic steam gasification of waste polyethylene (PE) from municipal solid waste (MSW) to produce syngas (H2 + CO) with NiO/γ-Al2O3 as catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the reactor temperature on the gas yield, gas composition, steam decomposition, low heating value (LHV), cold gas efficiency and carbon conversion efficiency was investigated at the temperature range of 700–900 °C, with a steam to waste polyethylene ratio of 1.33. Over the ranges of experimental conditions examined, NiO/γ-Al2O3 catalyst revealed better catalytic performance as a view of increasing product gas yield and of decreasing char and liquid yields in the presence of steam. Higher temperature resulted in more H2 and CO production, higher carbon conversion efficiency and product gas yield. The highest syngas (H2 + CO) content of 64.35 mol%, the highest H2 content of 36.98 mol%, and the highest CO content of 27.37 mol%, were achieved at the highest temperature level of 900 °C. Syngas produced with a H2/CO molar ratio in the range of 0.83–1.35, was highly desirable as feedstock for Fischer–Tropsch synthesis for the production of transportation fuels.  相似文献   

11.
As a novel gasification technology, chemical looping gasification (CLG) was considered as a promising technology in solid fuel gasification. In this work, CLG was applied into microalgae, and the characteristics of syngas production and oxygen carrier in the presence of steam were obtained through experiments in a fixed bed reactor. The results showed that the partial oxidation of oxygen carrier improved the gasification efficiency from 61.65% to 81.64%, with the combustible gas yield of 1.05 Nm3/kg, and this promotion effect mainly occurred at char gasification stage. Also, an optimal Fe2O3/C molar ratio of 0.25 was determined for the maximum gasification efficiency. 800 °C was needed for the gasification efficiency over 70%, but excess temperature caused the formation of dense layer on oxygen carrier particle surface. Steam as gasification agent promoted syngas production, but excess steam decreased the gasification efficiency. Steam also enhanced the hydrogen production by the conversion of Fe/FeO into Fe3O4, avoiding the intensive reduction of oxygen carrier. The Fe2O3 oxygen carrier maintained a good reactivity in 10th cycle while used for microalgae CLG. The results indicated that CLG provided a potential route for producing combustible gas from microalgae.  相似文献   

12.
Polystyrene (PS) pyrolysis and gasification have been examined in a semi-batch reactor at temperatures of 700, 800 and 900 °C. Characteristic differences between pyrolysis and gasification of polystyrene (PS) have been evaluated with specific performance focus on the evolution of syngas flow rate, evolution of hydrogen flow rate, evolution of output power, syngas yield, hydrogen yield, energy yield, apparent thermal efficiency and syngas quality. Behavior of PS under either pyrolysis or gasification processes is compared to that of char based sample, such as paper and cardboard. In contrast to char based materials, PS gasification yielded less syngas, hydrogen and energy than pyrolysis at 700 °C. However, the gasification of PS yielded more syngas, hydrogen and energy than pyrolysis at 900 °C temperature. Gasification of PS is affected by reactor temperature more than PS pyrolysis. Syngas, hydrogen and energy yield increased exponentially with temperature in case of gasification. However, syngas and energy yield increased linearly with temperature having rather a mild slope in the case of pyrolysis. Pyrolysis resulted in higher syngas quality at all temperatures. Kinetics of hydrogen evolution from the PS pyrolysis is introduced. The Coats and Redfern method was used to determine the kinetic parameters, activation energy (Eact), pre-exponential factor (A) and reaction order (n). The model used is the nth order chemical reaction model. Kinetic parameters have been determined for three slow heating rates, namely 8, 10 and 12 °C/min. The average values obtained from the three heating rate experiments were used to compare the model with the experimental data.  相似文献   

13.

The aim of this study was to assess the scientific and engineering advancements of producing hydrogen from biomass via two thermochemical processes: (a) conventional pyrolysis followed by reforming of the carbohydrate fraction of the bio-oil and (b) gasification followed by reforming of the syngas (H2 + CO). The yield from steam gasification increases with increasing water-to-sample ratio. The yields of hydrogen from the pyrolysis and the steam gasification increase with increasing of temperature. In general, the gasification temperature is higher than that of pyrolysis and the yield of hydrogen from the gasification is higher than that of the pyrolysis. The highest yields (% dry and ash free basis) were obtained from the pyrolysis (46%) and steam gasification (55%) of wheat straw while the lowest yields from olive waste. The yield of hydrogen from supercritical water extraction was considerably high (49%) at lower temperatures. The pyrolysis was carried out at the moderate temperatures and steam gasification at the highest temperatures. This study demonstrates that hydrogen can be produced economically from biomass. The pyrolysis-based technology, in particular, because it has coproduct opportunities, has the most favorable economics.  相似文献   

14.
In the present study the catalytic steam gasification of MSW to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the catalyst and reactor temperature on yield and product composition was studied at the temperature range of 750–950 °C, with a steam to MSW ratio of 0.77, for weight hourly space velocity of 1.29 h−1. Over the ranges of experimental conditions examined, calcined dolomite revealed better catalytic performance, at the presence of steam, tar was completely decomposed as temperature increases from 850 to 950 °C. Higher temperature resulted in more H2 and CO production, higher carbon conversion efficiency and dry gas yield. The highest H2 content of 53.29 mol%, and the highest H2 yield of 38.60 mol H2/kg MSW were observed at the highest temperature level of 950 °C, while, the maximum H2 yield potential reached 70.14 mol H2/kg dry MSW at 900 °C. Syngas produced by catalytic steam gasification of MSW varied in the range of 36.35–70.21 mol%. The char had a highest ash content of 84.01% at 950 °C, and negligible hydrogen, nitrogen and sulphur contents.  相似文献   

15.
Based on Response Surface Methodology, the experiments of biomass catalytic gasification designed by Design-Expert software were carried out in steam atmosphere and double-bed reactor. The response surface was set up with three parameters (gasification temperature, the content of K-based catalyst in gasification bed and the content of Ni-based catalyst in reforming bed) for biomass gasification performance of carbon conversion efficiency and hydrogen yield to make analysis and optimization about the reaction characteristics and gasification conditions. Results showed that gasification temperature and the content of K-based catalyst in gasification bed had significant influence on carbon conversion efficiency and hydrogen yield, whilst the content of Ni-based catalyst in reforming bed affected the gasification reactions to a large extent. Furthermore, appropriate conditions of biomass steam gasification were 800 °C for gasification temperature, 82% for the content of K-based catalyst in gasification bed and 74% for the content of Ni-based catalyst in reforming bed by the optimization model. In these conditions, the steam gasification experiments using wheat straw showed that carbon conversion efficiency was 96.9% while hydrogen yield reached 64.5 mol/kg, which was in good agreement with the model prediction. The role of the reforming bed was also analyzed and evaluated, which provided important insight that the employment of reforming bed made carbon conversion efficiency raised by 4.8%, while hydrogen yield achieved a relative growth of 50.5%.  相似文献   

16.
The concept of biomass steam gasification offers platform for production (i) of hydrogen, (ii) hydrocarbons and (iii) value added chemicals. Majority of these developments are either in nascent or in pilot/demonstration stage. In this context, there exists potential for hydrogen production via biomass steam gasification. Gaseous products of biomass steam gasification consist of large percentage of CO, CH4 and other hydrocarbons, which can be converted to hydrogen through water‐gas‐shift reaction, steam reforming and cracking respectively. Although there are many previous research works showing the potential of production of hydrogen from biomass in a two stage process, challenges remain in extended biomass and char gasification so as to reduce the amount of carbon in the residual char as well as improve conversion of heavy hydrocarbon condensates to hydrogen rich gas. In the current work, the characteristics of biomass steam gasification in an in‐house designed rotary tubular helical coil reactor at temperatures less than 850 °C, in the presence of superheated steam, were presented. The objectives were to obtain high carbon conversion in the primary biomass steam gasification step (upstream) and high product gas yield and hydrogen yield in the secondary fixed bed catalytic step (downstream). The influence of temperature, steam‐to‐biomass ratio and residence time on product gas yield in the rotary tubular helical coil gasifier was studied in detail using one of the abundantly available biomass sources in India‐rice husk. Further, enhancement of product gas yield and hydrogen yield in a fixed bed catalytic converter was studied and optimized. In the integrated pathway, a maximum gas yield of 1.92 Nm3/kg moisture‐free biomass was obtained at a carbon conversion efficiency of 92%. The maximum hydrogen purity achieved under steady state conditions was 53% by volume with a hydrogen yield of 91.5 g/kg of moisture‐free biomass. This study substantiates overall feasibility of production of high value hydrogen from locally available biomass by superheated steam gasification followed by catalytic conversion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Characteristics of syngas from the pyrolysis and gasification of food waste has been investigated. Characteristic differences in syngas properties and overall yields from pyrolysis and gasification were determined at two distinct high temperatures of 800 and 900 °C. Pyrolysis and gasification behavior were evaluated in terms of syngas flow rate, hydrogen flow rate, output power, total syngas yield, total hydrogen yield, total energy yield, and apparent thermal efficiency. Gasification was more beneficial than pyrolysis based on investigated criteria, but longer time was needed to finish the gasification process. Longer time of gasification is attributed to slow reactions between the residual char and gasifying agent. Consequently, the char gasification kinetics was investigated. Inorganic constituents of food char were found to have a catalytic effect. Char reactivity increased with increased degree of conversion. In the conversion range from 0.1 to 0.9 the increase in reactivity was accompanied by an increase in pre-exponential factor, which suggested an increase in gasifying agent adsorption rate to char surface. However, in the conversion range from 0.93 to 0.98 the increase in reactivity was accompanied by a decrease in activation energy. A compensation effect was observed in this range of conversion of 0.93–0.98.  相似文献   

18.
试验研究了木屑在水蒸气气氛下的热失重行为及气化过程中合成气释放特性。首先采用TG-DTA对木屑样品进行了水蒸气气氛下的热重行为分析,结果表明,木屑气化过程可以分为挥发分释放和半焦气化两个阶段,分别可由二级反应动力学和三维扩散Ginstling-Broushtein方程描述,对应的表观活化能分别为87.014kJ/mol和103.35 kJ/mol。此外,在自制的固定床气化反应装置上,研究了生物质气化过程中挥发分释放和半焦气化阶段合成气释放特性。另外,半焦水蒸气气化阶段对气体中合成气含量和H2/CO起到决定性作用,通过合理调控半焦气化阶段反应条件,可以得到合适化学当量比的生物质合成气。  相似文献   

19.
In this study, steam gasification and co-gasification of Japanese cedarwood and its commercial biochar were performed in a lab-scale fixed-bed reactor to investigate the feasibility for producing H2-rich syngas. Ultimate analysis, proximate analysis, Brunauer-Emmett-Teller (BET) surface area analysis, and scanning electron microscopy (SEM) were conducted to understand the changes caused by the carbonization process. The effects of gasification temperature and steam flow rate on gas production yield from the steam gasification of the individual samples were investigated at first, which showed larger gas production yield and less tar yield for the steam gasification of the commercial biochar than that of raw cedarwood, indicating that the commercial biochar obtained from the carbonization process was more beneficial for the gasification. The co-gasification of raw Japanese cedarwood and its commercial biochar with different mixing ratios was conducted at different reaction temperatures. The synergistic effect was obviously observed. Especially, the commercial biochar with the highly porous structure and high content of alkali and alkaline earth metal (AAEM) species might provide the catalytic effect on cracking and reforming of tar derived from the raw cedarwood, resulting in a larger H2 yield. However, the catalytic effect and gasification reactivity of biochar would decrease by increasing the amount of raw-cedarwood in the blends due to the coke deposition on the surface of biochar.  相似文献   

20.
A kinetic model of algae gasification for hydrogen production with air and steam as gasification agent and was developed. The developed model was based on kinetic parameters available in the literature. The objective was to study the effect of critical parameters such as reaction temperature, stoichiometric ratio (SR) and steam flow rate (SFR) on H2/CO ratio in the syngas, hydrogen yield, and lower heating value (LHV) of the produced syngas. Model formulation was validated with experimental results on air-steam gasification of biomass conducted in an atmospheric fluidized bed gasifier. The results showed that higher temperature contributed to lower H2/CO, while higher SFR resulted in higher H2/CO. The LHV of producer gas increased with SFR and gasification temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号