首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colorless distributed combustion (CDC) has been shown to provide significant improvement in gas turbine combustor performance. Colorless distributed combustion with swirl is investigated here to develop ultra-low emissions of NO and CO, and significantly improved pattern factor. Experimental investigations have been performed using a cylindrical geometry combustor with swirling air injection and axial hot gas exit stream from the combustor. Air was injected tangentially to impart swirl to the flow inside the combustor. The results obtained from the combustor have demonstrated very low levels of NO (∼3 PPM) and CO (∼70 PPM) emissions at an equivalence ratio of 0.7 and a high heat release intensity of 36 MW/m3-atm under non-premixed combustion. To further simulate gas turbine operating conditions, inlet air to the combustor was preheated to 600 K temperature and the combustor operated at 2 atm pressure. Results showed very low levels of CO (∼10 PPM) but the NO increased somewhat to ∼10 PPM at an equivalence ratio of 0.5 and heat release intensity of 22.5 MW/m3-atm under non-premixed combustion conditions. For premixed combustion, the combustor demonstrated low levels of both NO (5 PPM) and CO (8 PPM) at an equivalence ratio of 0.6 and a heat release intensity of 27 MW/m3-atm. Results are reported at different equivalence ratios on the emission of NO and CO, lean stability limit and OH* chemiluminescence. These results suggest that further performance improvement can be achieved with improved fuel mixture preparation prior to the ignition of fuel at higher operational pressures using swirling combustor design for our quest to develop ultra low emission high intensity combustor for gas turbine application.  相似文献   

2.
In this paper reverse flow modes of colorless distributed combustion (CDC) have been investigated for application to gas turbine combustors. Rapid mixing between the injected fuel and hot oxidizer has been carefully explored for spontaneous ignition of the mixture to achieve distributed combustion reactions. Distributed reactions can be achieved in premixed, partially premixed or non-premixed modes of combustor operation with sufficient entrainment of burned gases and faster turbulent mixing between the reactants. In the present investigation reverse flow modes consisting of three configurations at thermal intensity of 28 MW/m3-atm and five configurations at thermal intensity of 57 MW/m3-atm have been investigated and these high thermal loadings represent characteristic gas turbine combustion conditions. In all the configurations the air injection port is positioned at the combustor exit end, whereas the location of fuel injection ports is changed to give different configurations. The results are presented on the exhaust emissions and radical emissions using experiments, and evaluation of flowfield using numerical simulations. Ultra-low NOx emissions were found for both the premixed and non-premixed combustion modes investigated here. Cross-flow configuration, wherein the fuel is injected at high velocity cross stream to the air jet resulted in characteristics closest to premixed combustion mode. Change in fuel injection location resulted in changing the combustion characteristics from closer to diffusion mode to distributed regime. This feature is beneficial for part load operation where higher stability limit is desirable.  相似文献   

3.
New innovative advanced combustion design methodology for gas turbine applications is presented that is focused on the quest towards zero emissions. The new design methodology is called colorless distributed combustion (CDC) and is significantly different from the currently used methodology. In this paper forward flow modes of CDC have been investigated for application to gas turbine combustors. The CDC provides significant improvement in pattern factor, reduced NOx emission and uniform thermal field in the entire combustion zone for it to be called as an isothermal reactor. Basic requirement for CDC is carefully tailored mixture preparation through good mixing between the combustion air and product gases prior to rapid mixing with fuel so that the reactants are at much higher temperature to result in hot and diluted oxidant stream at temperatures that are high enough to autoignite the fuel and oxidant mixture. With desirable conditions one can achieve spontaneous ignition of the fuel with distributed combustion reactions. Distributed reactions can also be achieved in premixed mode of operation with sufficient entrainment of burned gases and faster turbulent mixing between the reactants. In the present investigation forward flow modes consisting of two non-premixed combustion modes and one premixed combustion mode have been examined that provide potential for CDC. In all the configurations the air injection port is positioned at the opposite side of the combustor exit, whereas the location of fuel injection ports is changed to give different configurations. Two combustion geometries resulting in thermal intensity of 5 MW/m3-atm and 28 MW/m3-atm are investigated. Increase in thermal intensity (lower combustion volume) presents many challenges, such as, lower residence time, lower recirculation of gases and effect of confinement on jet characteristics. The results are presented on the global flame signatures, exhaust emissions, and radical emissions using experiments and flowfield using numerical simulations. Ultra-low NOx emissions are found for both the premixed and non-premixed combustion modes at the two thermal intensities investigated here. Almost colorless flames (no visible flame signatures) have been observed for the premixed combustion mode. The reaction zone is observed to be significantly different in the two non-premixed modes. Higher thermal intensity case resulted in lower recirculation of gases within the combustion chamber and higher CO levels, possibly due to lower associated residence time. The characteristics at the two thermal intensity combustors investigated here were found to be similar.  相似文献   

4.
In this investigation the role of hydrogen addition in a reverse flow configuration, consisting of both non-premixed and premixed combustion modes, have been examined for the CDC flames. In the non-premixed configuration the air injection port is positioned at combustor exit end while the fuel injection port is positioned on the side so that the fuel is injected in cross-flow with respect to air injection. The thermal intensity of the flames investigated is 85 MW/m3 atm to simulate high thermal intensity gas turbine combustion conditions. The results are presented on the global flame signatures, exhaust emissions, and radical emissions using experiments and flowfield using numerical simulations. Ultra low NOx emissions are found for both the premixed and non-premixed combustion modes. Addition of hydrogen to methane fuel resulted in only a slight increase of NO emission, significant decrease of CO emission and extended the lean operational limit of the combustor.  相似文献   

5.
The effect of hydrogen addition in methane-air premixed flames has been examined from a swirl-stabilized combustor under confined conditions. The effect of hydrogen addition in methane-air flame has been examined over a range of conditions using a laboratory-scale premixed combustor operated at 5.81 kW. Different swirlers have been investigated to identify the role of swirl strength to the incoming mixture. The flame stability was examined for the effect of amount of hydrogen addition, combustion air flow rates and swirl strengths. This was carried out by comparing adiabatic flame temperatures at the lean flame limit. The combustion characteristics of hydrogen-enriched methane flames at constant heat load but different swirl strengths have been examined using particle image velocimetry (PIV), micro-thermocouples and OH chemiluminescence diagnostics that provided information on velocity, thermal field, and combustion generated OH species concentration in the flame, respectively. Gas analyzer was used to obtain NOx and CO concentration at the combustor exit. The results show that the lean stability limit is extended by hydrogen addition. The stability limit can reduce at higher swirl intensity to the fuel-air mixture operating at lower adiabatic flame temperatures. The addition of hydrogen increases the NOx emission; however, this effect can be reduced by increasing either the excess air or swirl intensity. The emissions of NOx and CO from the premixed flame were also compared with a diffusion flame type combustor. The NOx emissions of hydrogen-enriched methane premixed flame were found to be lower than the corresponding diffusion flame under same operating conditions for the fuel-lean case.  相似文献   

6.
Fuel/air mixing effects in a premixer have been examined to investigate the combustion characteristics, such as the emission of NOx and CO, under simulated lean premixed gas turbine combustor conditions at normal and elevated pressures of up to 3.5 bar with air preheat temperature of 450 K. The results obtained have been compared with a diffusion flame type gas turbine combustor for emission characteristics. The results show that the NOx emission is profoundly affected by the mixing between fuel and air in the combustor. NOx emission is lowered by supplying uniform fuel/air gas mixture to the combustor and the NOx emission reduces with decrease in residence time of the hot gases in the combustor. The NOx emission level of the lean premixed combustor is a strong function of equivalence ratio and the dependency is smaller for a traditional diffusion flame combustor under the examined experimental conditions. Furthermore, the recirculation flow, affected by dome angle of combustor, reduces the high temperature reaction zone or hot spot in the combustor, thus reducing the NOx emission levels.  相似文献   

7.
Colorless distributed combustion (CDC) has been demonstrated to provide ultra-low emission of NOx and CO, improved pattern factor and reduced combustion noise in high intensity gas turbine combustors. The key feature to achieve CDC is the controlled flow distribution, reduce ignition delay, and high speed injection of air and fuel jets and their controlled mixing to promote distributed reaction zone in the entire combustion volume without any flame stabilizer. Large gas recirculation and high turbulent mixing rates are desirable to achieve distributed reactions thus avoiding hot spot zones in the flame. The high temperature air combustion (HiTAC) technology has been successfully demonstrated in industrial furnaces which inherently possess low heat release intensity. However, gas turbine combustors operate at high heat release intensity and this result in many challenges for combustor design, which include lower residence time, high flow velocity and difficulty to contain the flame within a given volume. The focus here is on colorless distributed combustion for stationary gas turbine applications. In the first part of investigation effect of fuel injection diameter and air injection diameter is investigated in detail to elucidate the effect fuel/air mixing and gas recirculation on characteristics of CDC at relatively lower heat release intensity of 5 MW/m3 atm. Based on favorable conditions at lower heat release intensity the effect of confinement size (reduction in combustor volume at same heat load) is investigated to examine heat release intensity up to 40 MW/m3 atm. Three confinement sizes with same length and different diameters resulting in heat release intensity of 20 MW/m3 atm, 30 MW/m3 atm and 40 MW/m3 atm have been investigated. Both non-premixed and premixed modes were examined for the range of heat release intensities. The heat load for the combustor was 25 kW with methane fuel. The air and fuel injection temperature was at normal 300 K. The combustor was operated at 1 atm pressure. The results were evaluated for flow field, fuel/air mixing and gas recirculation from numerical simulations and global flame images, and emissions of NO, CO from experiments. It was observed that the larger air injection diameter resulted in significantly higher levels of NO and CO whereas increase in fuel injection diameter had minimal effect on the NO and resulted in small increase of CO emissions. Increase in heat release intensity had minimal effect on NO emissions, however it resulted in significantly higher CO emissions. The premixed combustion mode resulted in ultra-low NO levels (<1 ppm) and NO emission as low as 5 ppm was obtained with the non-premixed flame mode.  相似文献   

8.
This study investigates the characteristics of fuel NOx formation resulting from the combustion of producer gas derived from biomass gasification using different feedstocks. Common industrial burners are optimized for using natural gas or coal-derived syngas. With the increasing demand in using biomass for power generation, it is important to develop burners that can mitigate fuel NOx emissions due to the combustion of ammonia, which is the major nitrogen-containing species in biomass-derived gas. In this study, the combustion process inside the burner is modeled using computational fluid dynamics (CFD) with detailed chemistry. A reduced mechanism (36 species and 198 reactions) is developed from GRI 3.0 in order to reduce the computation time. Combustion simulations are performed for producer gas arising from different feedstocks such as wood gas, wood + 13% DDGS (dried distiller grain soluble) gas and wood + 40% DDGS gas and also at different air equivalence ratios ranging from 1.2 to 2.5. The predicted NOx emissions are compared with the experimental data and good levels of agreement are obtained. It is found out that NOx is very sensitive to the ammonia content in the producer gas. Results show that although NO–NO2 interchanges are the most prominent reactions involving NO, the major NO producing reactions are the oxidation of NH and N at slightly fuel rich conditions and high temperature. Further analysis of results is conducted to determine the conditions favorable for NOx reduction. The results indicate that NOx can be reduced by designing combustion conditions which have fuel rich zones in most of the regions. The results of this study can be used to design low NOx burners for combustion of gas mixtures derived from gasification of biomass. One suggestion to reduce NOx is to produce a diverging flame using a bluff body in the flame region such that NO generated upstream will pass through the fuel rich flame and be reduced.  相似文献   

9.
10.
In this paper, flameless combustion was promoted to suppress thermal-NOx formation in the hydrogen-high-containing fuel combustion. The PSRN model was used to model the flameless combustion in the air for four fuels: H2/CH4 60/40% (by volume), H2/CH4 40/60%, H2/CH4 20/80% and pure hydrogen. The results show that the NOx emissions below 30 ppmv while CO emissions are under 50 ppmv, which are coincident with the experimental data in the “clean flameless combustion” regime for all the four fuels. The simulation also reveals that CO decreases from 48 ppmv to nearly zero when the hydrogen composition varies from 40% to 100%, but the NOx emission is not sensitive to the hydrogen composition. In the highly diluted case, the NOx and CO emissions do not depend on the entrainment ratio.  相似文献   

11.
The use of fossil fuel is expected to increase significantly by midcentury because of the large rise in the world energy demand despite the effective integration of renewable energies in the energy production sector. This increase, alongside with the development of stricter emission regulations, forced the manufacturers of combustion systems, especially gas turbines, to develop novel combustion techniques for the control of NOx and CO2 emissions, the latter being a greenhouse gas responsible for more than 60% to the global warming problem. The present review addresses different burner designs and combustion techniques for clean power production in gas turbines. Combustion and emission characteristics, flame instabilities, and solution techniques are presented, such as lean premixed air‐fuel (LPM) and premixed oxy‐fuel combustion techniques, and the combustor performance is compared for both cases. The fuel flexibility approach is also reviewed, as one of the combustion techniques for controlling emissions and reducing flame instabilities, focusing on the hydrogen‐enrichment and the integrated fuel‐flexible premixed oxy‐combustion approaches. State‐of‐the‐art burner designs for gas turbine combustion applications are reviewed in this study, including stagnation point reverse flow (SPRF) burner, dry low NOx (DLN) and dry low‐emission (DLE) burners, EnVironmental burners (including EV, AEV, and SEV burners), perforated plate (PP) burner, and micromixer (MM) burner. Special emphasis is made on the MM combustor technology, as one of the most recent advances in gas turbines for stable premixed flame operation with wide turndown and effective control of NOx emissions. Since the generation of pure oxygen is prerequisite to oxy‐combustion, oxygen‐separation membranes became of immense importance either for air separation for clean oxy‐combustion applications or for conversion/splitting of the effluent CO2 into useful chemical and energy products. The different carbon‐capture technologies, along with the most recent carbon‐utilization approaches towards CO2 emissions control, are also reviewed.  相似文献   

12.
The effect of hydrogen addition in methane–air premixed flames has been examined from a swirl-stabilized combustor under unconfined flame conditions. Different swirlers have been examined to investigate the effect of swirl intensity on enriching methane–air flame with hydrogen in a laboratory-scale premixed combustor operated at 5.81 kW. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced into the burner having swirlers of different swirl vane angles that provided different swirl strengths. The combustion characteristics of hydrogen-enriched methane–air flames at fixed thermal load but different swirl strengths were examined using particle image velocimetry (PIV), OH chemiluminescence, gas analyzers, and micro-thermocouple diagnostics to provide information on flow field, combustion generated OH radical and gas species concentration, and temperature distribution, respectively. The results show that higher combustibility of hydrogen assists to promote faster chemical reaction, raises temperature in the reaction zone and reduces the recirculation flow in the reaction zone. The upstream of flame region is more dependent on the swirl strength than the effect of hydrogen addition to methane fuel. At lower swirl strength condition the NO concentration in the reaction zone reduces with increase in hydrogen content in the fuel mixture. Higher combustibility of hydrogen accelerates the flow to reduce the residence time of hot product gases in the high temperature reaction zone. At higher swirl strength the NO concentration increases with increase in hydrogen content in the fuel mixture. The effect of dynamic expansion of the gases with hydrogen addition appears to be more dominant to reduce the recirculation of relatively cooler gases into the reaction zone. NO concentration also increases with decrease in the swirl strength.  相似文献   

13.
An engineering model of a propane-fueled miniature combustor was developed for ultra-micro gas turbines. The combustion chamber had a diameter of 20 mm, height of 4 mm, and volume of 1.26 cm3. The flat-flame burning method was applied for lean-premixed propane–air combustion. To create the stagnation flow field for a specific flat-flame formation, a flat plate was set over the porous plate in the combustion chamber. A burning experiment was performed to evaluate the combustion characteristics. The flame stability limit was sufficiently wide to include the design operation conditions of an equivalence ratio of 0.55 and air mass flow rate of 0.15 g/s, and the dominant factors affecting the limit were clarified as the heat loss and velocity balance between the burning velocity and the premixture flow velocity at the porous plate. CO, total hydrocarbons (THC), and NOx emission characteristics were established based on the burned gas temperatures in the combustion chamber and the temperature distribution in the combustor. At an air mass flow rate of less than 0.10 g/s, CO and THC emissions were more than 1000 ppm due to large heat loss. As the air mass flow rate increased, the heat loss decreased, but CO emissions remained large due to the short residence time in the combustion chamber. NOx emission depended mainly on the burned gas temperature in the combustion chamber as well as on the residence time. To reduce emissions despite the short residence time, a platinum mesh was placed after the combustion chamber, which drastically decreased the CO emissions. The combustor performance was compared with that of other miniature combustors, and the results verified that the present combustor has suitable combustion characteristics for a UMGT, although the overall combustor size and heat loss need to be reduced.  相似文献   

14.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

15.
The distinctive properties of hydrogen have initiated considerable applied research related to the internal combustion engine. Recently, it has been reported that NOx emissions were reduced by using hydrogen in a diesel engine at low temperature and heavy EGR conditions. As the continuing study, cylinder pressure was also investigated to determine the combustion characteristics and their relationship to NOx emissions. The test engine was operated at constant speed and fixed diesel fuel injection rate (1500 rpm, 2.5 kg/h). Diesel fuel was injected in a split pattern into a 2-L diesel engine. The cylinder pressure was measured for different hydrogen flow rates and EGR ratios. The intake manifold temperature was controlled to be the same to avoid the gas intake temperature variations under the widely differing levels (2%-31%) of EGR. The measured cylinder pressure was analyzed for characteristic combustion values, such as mass burn fraction and combustion duration.The rising crank angle of the heat release rate was unaffected by the presence of hydrogen. However, supplying hydrogen extended the main combustion duration. This longer main combustion duration was particularly noticeable at the heavy EGR condition. It correlated well with the reduced NOx emissions.  相似文献   

16.
Modern diesel engines have improved engine fuel economy and significantly reduced nitrogen oxides (NOx) and particulate matter (PM) emissions achieved by advances in both combustion and exhaust aftertreatment technologies. Recently, it has been shown that the vehicle emissions can be further improved by several catalytic systems including fuel reformers and aftertreatment systems, such as the Lean NOx Trap (LNT). This NOx removal system, called LNT, absorbs NOx under lean exhaust gas conditions and releases NOx under rich conditions. This technology can provide high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter under appropriate conditions.  相似文献   

17.
Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NOX emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NOX emissions and a shift in NO/NO2 ratio in which NO emissions decreased and NO2 emissions increased, with NO2 becoming the dominant NOX component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NOX for some operating conditions. A model that explicitly accounts for turbulence–chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm that temperature changes alone are not sufficient to explain the observed reduction in NO and increase in NO2 with increasing H2. The CFD results are consistent with the hypothesis that in-cylinder HO2 levels increase with increasing hydrogen, and that the increase in HO2 enhances the conversion of NO to NO2. Increased aspiration of hydrogen resulted in PM, and HC emissions which were combustion mode dependent. Predominantly, CO and CO2 decreased with the increase of hydrogen. The aspiration of hydrogen into the engine modestly decreased fuel economy due to reduced volumetric efficiency from the displacement of air in the cylinder by hydrogen.  相似文献   

18.
The combustion characteristics of rice husk fuel in a dual-staging vortex-combustor (DSVC) are experimentally investigated. In the present work, the vortex flow is created by using a snail entrance mounted at the bottom of the combustor. The temperature distributions at selected locations inside the combustor, the flue gas emissions (CO, CO2, O2, NOx), and the combustion/thermal efficiency are monitored. Measurements are made at a constant rice husk feed rate of 0.25 kg/min with various excess airs (37%, 56%, 74% and 92%) and different secondary air injection fractions (λ = 0.0, 0.15 and 0.2), respectively. The combustion chamber is 1800 mm high and 300 mm in diameter (D) with a centered exhausted pipe while the middle chamber of the combustor is set to 0.5D. The smaller section at the middle chamber is introduced to split the chamber to be dual-staging chamber where a large central toroidal recirculation zone induced by swirl flow through the small section is generated in the top chamber. The experimental results reveal that the highest temperature inside the combustor is about 1000 °C whereas both the thermal and the combustion efficiency are 41.6% and 99.8% for 74% excess air without the secondary air injection (λ = 0.0). In addition, the emissions are CO2 = 8.1%, O2 = 9.3%, CO = 352 ppm, NOx = 294 ppm and small amount of fly ash. Therefore, the DSVC shows an excellent performance, low emissions, high stabilization and ease of operation in firing the rice husk.  相似文献   

19.
This paper presents the results of combustion performance testing of a 5.25 MWe industrial gas turbine which features a conical counter-flow double-swirl stabilized, premixed combustor and the Combustion Tuning methodology using a Sensitivity Analysis (abbreviated to CTSA). The combustion performance test was conducted in an atmospheric pressure, optically accessible, real engine scale combustor. The atmospheric rig and real engine correlation was verified by comparing real engine data which were gathered from high pressure tests. NOx and CO emissions, combustor temperature at the fuel nozzle, dump plane and exhaust, dynamic pressure and flame structure, using planer laser induced fluorescence, were investigated with respect to power load and ambient temperature. To enhance the NOx and CO emission performances with stable combustion, the relative sensitivities of five control parameters were analyzed, and on the basis of sensitivity analysis data, combustion tuning testing was conducted. By using the CTSA, NOx emission in exhaust gas was reduced from 18 to 2.2 ppm at base load, with high combustion efficiency (>99.9%), and very little pressure fluctuation (Prms < 0.1 kPa).  相似文献   

20.
The combustion of high-temperature off-gas of steelmaking converter with periodical change of temperature and CO concentration always leads to CO and NOx over-standard emissions. In the paper, high-temperature off-gas combustion is simulated by adopting counterflow diffusion flame model, and some influencing factors of CO and NOx emissions are investigated by adopting a detailed chemistry GRI 3.0 mechanism. The emission index of NOx (EINOx) decreases 1.7–4.6% when air stoichiometric ratio (SR) increase from 0.6 to 1.4, and it dramatically increases with off-gas temperature at a given SR when the off-gas temperature is above 1500 K. High-concentration CO in off-gas can result in high NOx emissions, and NOx levels increase dramatically with CO concentration when off-gas temperature is above 1700 K. Both SR and off-gas temperature are important for the increase of CO burnout index (BICO) when SR is less than 1.0, but BICO increase about 1% when off-gas temperature increases from 1100 K to 1900 K at SR > 1.0. BICO increases with CO concentration in off-gas, and the influence of off-gas temperature on BICO is marginal. BICO increases with the relative humidity (RH) in air supplied, but it increases about 0.5% when RH is larger than 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号