共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study an unrelated parallel machine scheduling problem with setup time and learning effects simultaneously. The setup time is proportional to the length of the already processed jobs. That is, the setup time of each job is past-sequence-dependent. The objectives are to minimize the total absolute deviation of job completion times and the total load on all machines, respectively. We show that the proposed problem is polynomially solvable. We also discuss two special cases of the problem and show that they can be optimally solved by lower order algorithms. 相似文献
2.
Scheduling unrelated parallel batch processing machines to minimize makespan is studied in this paper. Jobs with non-identical sizes are scheduled on batch processing machines that can process several jobs as a batch as long as the machine capacity is not violated. Several heuristics based on best fit longest processing time (BFLPT) in two groups are proposed to solve the problem. A lower bound is also proved to evaluate the quality of the heuristics. Computational experiments were undertaken. These showed that J_SC-BFLPT, considering both load balance of machines and job processing times, was robust and outperformed other heuristics for most of the problem categories. 相似文献
3.
Enrique GerstlGur Mosheiov 《Computers & Operations Research》2012,39(9):1927-1932
We study a scheduling problem with job classes on parallel uniform machines. All the jobs of a given class share a common due-date. General, non-decreasing and class-dependent earliness and tardiness cost functions are assumed. Two objectives are considered: (i) minmax, where the scheduler is required to minimize the maximum earliness/tardiness cost among all the jobs and (ii) minmax-minsum, where the scheduler minimizes the sum of the maximum earliness/tardiness cost in all job classes. The problem is easily shown to be NP-hard, and we focus here on the introduction of simple heuristics. We introduce LPT (Largest Processing Time first)-based heuristics for the allocation of jobs to machines within each class, followed by a solution of an appropriate non-linear program, which produces for this job allocation an optimal schedule of the classes. We also propose a lower bound, based on balancing the load on the machines. Our numerical tests indicate that the heuristics result in very small optimality gaps. 相似文献
4.
This research analyzes the problem of scheduling a set of n jobs with arbitrary job sizes and non-zero ready times on a set of m unrelated parallel batch processing machines so as to minimize the makespan. Unrelated parallel machine is a generalization of the identical parallel processing machines and is closer to real-world production systems. Each machine can accommodate and process several jobs simultaneously as a batch as long as the machine capacity is not exceeded. The batch processing time and the batch ready time are respectively equal to the largest processing time and the largest ready time among all the jobs in the batch. Motivated by the computational complexity and the practical relevance of the problem, we present several heuristics based on first-fit and best-fit earliest job ready time rules. We also present a mixed integer programming model for the problem and a lower bound to evaluate the quality of the heuristics. The small computational effort of deterministic heuristics, which is valuable in some practical applications, is also one of the reasons that motivates this study. The results show that the heuristic proposed in this paper has a superior performance compared to the heuristics based on ideas proposed in the literature. 相似文献
5.
6.
Zhao et al. (2009) [24] study the m identical parallel-machine scheduling problem with rate-modifying activities to minimize the total completion time. They show that the problem can be solved in O(n2m+3) time. In this study we extend the scheduling environment to the unrelated parallel-machine setting and present a more efficient algorithm to solve the extended problem. For the cases where the rate-modifying rate is (i) larger than 0 and not larger than 1, and (ii) larger than 0, we show that the problem can be solved in O(nm+3) and O(n2m+2) time, respectively. 相似文献
7.
Following several recent papers discussing various problems of scheduling a maintenance activity, we focus here on scheduling a maintenance activity on unrelated parallel machines. The objective is to minimize flow-time. In the basic setting, we assume that all the machines must be maintained simultaneously. The problem is known to be NP-hard, and we introduce and test numerically an efficient heuristic and a lower bound, both based on a solution of a matching problem. We also study the relaxed version, where the machines are not restricted to be maintained at the same time. Similar heuristic and lower bound are proposed and tested. 相似文献
8.
9.
10.
We consider the scheduling of orders in an environment with m uniform machines in parallel. Each order requests certain amounts of k different product types. Each product type can be produced by any one of the m machines. No setup is required if a machine switches over from one product type to another. Different product types intended for the same order can be produced at the same time (concurrently) on different machines. Each order is released at time zero and has a positive weight. Preemptions are allowed. The completion time of an order is the finish time of the product type that is completed last for that order. The objective is to minimize the total weighted completion time. We propose heuristics for the non-preemptive as well as the preemptive case and obtain worst case bounds that are a function of the number of machines as well as the differences in the speeds of the machines. Even though the worst-case bounds we showed for the two heuristics are not very tight, our experimental results show that they yield solutions that are very close to optimal. 相似文献
11.
12.
Gur MosheiovDaniel Oron 《Computers & Operations Research》2012,39(7):1601-1604
In various real life scheduling systems job processing times vary according to the number of jobs previously processed. The vast majority of studies assume a restrictive functional form to describe job processing times. In this note, we address a scheduling problem with the most general job processing time functions. The machine setting assumed is an m-machine proportionate flowshop, and the objective function is minimum number of tardy jobs. We show that the problem can be formulated as a bottleneck assignment problem with a maximum cardinality constraint. An efficient polynomial time (O(n4 log n)) solution is introduced. 相似文献
13.
We consider the problem of minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals. We propose a family of iterative improvement heuristics based on previous work by Potts [Analysis of a heuristic for one machine sequencing with release dates and delivery times. Operations Research 1980;28:1436–41] and Uzsoy [Scheduling batch processing machines with incompatible job families. International Journal for Production Research 1995;33(10):2685–708] and combine them with a genetic algorithm (GA) based on the random keys encoding of Bean [Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing 1994;6(2):154–60]. Extensive computational experiments show that one of the proposed GAs runs significantly faster than the other, providing a good tradeoff between solution time and quality. The combination of iterative heuristics with GAs consistently outperforms the iterative heuristics on their own. 相似文献
14.
This paper tackles rescheduling for the unrelated parallel machine problem with sequence dependent setup times and different rates of breakdowns or urgent jobs arrivals. The jobs’ processing and setup times are stochastic for better depiction of the real world. A new repair rule which will be referred to as Minimum Weighted Cmax Difference (MWCD) is developed and compared to existing algorithms using simulation. 相似文献
15.
When the processing times of jobs are controllable, selected processing times affect both the manufacturing cost and the scheduling performance. A well-known example for such a case that this paper specifically deals with is the turning operation on a CNC machine. Manufacturing cost of a turning operation is a nonlinear convex function of its processing time. We also know that scheduling decisions are quite sensitive to the processing times. Therefore, this paper considers minimizing total manufacturing cost (F1) and total completion time (F2) objectives simultaneously on identical parallel CNC turning machines. Since decreasing processing time of a job increases its manufacturing cost, we cannot minimize both objectives at the same time, so the problem is to generate non-dominated solutions. We consider the problem of minimizing F1 subject to a given F2 level and give an effective formulation for the problem. For this problem, we prove some optimality properties which facilitated designing an efficient heuristic algorithm to generate approximate non-dominated solutions. Computational results show that proposed algorithm performs almost equal with the GAMS/MINOS commercial solver although it spends much less computation time. 相似文献
16.
Pedro Leite Rocha Martín Gómez Ravetti Geraldo Robson Mateus Panos M. Pardalos 《Computers & Operations Research》2008
A scheduling problem with unrelated parallel machines, sequence and machine-dependent setup times, due dates and weighted jobs is considered in this work. A branch-and-bound algorithm (B&B) is developed and a solution provided by the metaheuristic GRASP is used as an upper bound. We also propose a set of instances for this type of problem. The results are compared to the solutions provided by two mixed integer programming models (MIP) with the solver CPLEX 9.0. We carry out computational experiments and the algorithm performs extremely well on instances with up to 30 jobs. 相似文献
17.
In this paper, we consider an identical parallel machine scheduling problem with sequence-dependent setup times and job release dates. An improved iterated greedy heuristic with a sinking temperature is presented to minimize the maximum lateness. To verify the developed heuristic, computational experiments are conducted on a well-known benchmark problem data set. The experimental results show that the proposed heuristic outperforms the basic iterated greedy heuristic and the state-of-art algorithms on the same benchmark problem data set. It is believed that this improved approach will also be helpful for other applications. 相似文献
18.
Michele Pfund John W. Fowler Amit Gadkari Yan Chen 《Computers & Industrial Engineering》2008,54(4):764-782
In this research we are interested in scheduling jobs with ready times on identical parallel machines with sequence dependent setups. Our objective is to minimize the total weighted tardiness. As this problem is NP-Hard, we develop a heuristic to solve this problem in reasonable time. Our approach is an extension of the apparent tardiness cost with setups (ATCS) approach by [Lee, Y. H., Pinedo, M. (1997). Scheduling jobs on parallel machines with sequence dependent setup times. European Journal of Operational Research, 100, 464–474.] to allow non-ready jobs to be scheduled – meaning we allow a machine to remain idle for a high priority job arriving at a later time. To determine the scaling parameters for our composite dispatching rule (called ATCSR), we first develop a ‘grid approach’ that considers multiple values for the scaling parameters, generates multiple schedules, and chooses the best schedule for the solution. This experimentation was then used to develop regression equations to predict the values of the scaling parameters that would yield the highest quality solution. The grid and regression versions of ATCSR provide better performance than grid and empirically based formula versions of ATCS, BATCS, and X-RM which are the prominent algorithms in the literature. 相似文献
19.
Rene DriesselLars Mönch 《Computers & Industrial Engineering》2011,61(2):336-345
In this paper, we discuss a scheduling problem for jobs on identical parallel machines. Ready times of the jobs, precedence constraints, and sequence-dependent setup times are considered. We are interested in minimizing the performance measure total weighted tardiness that is important for achieving good on-time delivery performance. Scheduling problems of this type appear as subproblems in decomposition approaches for large scale job shops with automated transport of the jobs as, for example, in semiconductor manufacturing. We suggest several variants of variable neighborhood search (VNS) schemes for this scheduling problem and compare their performance with the performance of a list based scheduling approach based on the Apparent Tardiness Cost with Setups and Ready Times (ATCSR) dispatching rule. Based on extensive computational experiments with randomly generated test instances we are able to show that the VNS approach clearly outperforms heuristics based on the ATCSR dispatching rule in many situations with respect to solution quality. When using the schedule obtained by ATCSR as an initial solution for VNS, then the entire scheme is also fast and can be used as a subproblem solution procedure for complex job shop decomposition approaches. 相似文献
20.
We consider a single machine scheduling problem with simple linear deterioration. Job processing times are assumed to be a simple linear function of a job-dependent growth rate and the job's starting time. We seek an optimal schedule, so as to minimize the total absolute deviation of completion times (TADC). We prove several interesting properties of an optimal schedule, and introduce two efficient heuristics which are tested against a lower bound. 相似文献